mirror of
https://github.com/lavaux/glmath.git
synced 2024-11-24 11:58:30 +01:00
232 lines
8.5 KiB
C++
232 lines
8.5 KiB
C++
|
// Original code derived from Boost and is distributed here
|
||
|
// under the Boost license (licenses/boost-license.txt)
|
||
|
// Copyright (c) 2006 Xiaogang Zhang
|
||
|
// Copyright (c) 2007, 2017 John Maddock
|
||
|
// Secondary code copyright by its author and is distributed here
|
||
|
// under the BSD-3 license (LICENSE.md). Derived from
|
||
|
// stan/math/prim/fun/log_modified_bessel_first_kind.hpp
|
||
|
|
||
|
#ifndef __COSMOTOOL_SPECIAL_MATH_HPP
|
||
|
#define __COSMOTOOL_SPECIAL_MATH_HPP
|
||
|
|
||
|
#include "algo.hpp"
|
||
|
#include <boost/math/constants/constants.hpp>
|
||
|
#include <boost/math/tools/rational.hpp>
|
||
|
#include <cmath>
|
||
|
#include <limits>
|
||
|
|
||
|
// Taken and adapted from
|
||
|
// https://github.com/stan-dev/math/blob/develop/stan/math/prim/fun/log_modified_bessel_first_kind.hpp
|
||
|
|
||
|
namespace CosmoTool {
|
||
|
|
||
|
template <typename T> T log1p_exp(T x) {
|
||
|
if (x > T(0)) {
|
||
|
return x + std::log1p(std::exp(-x));
|
||
|
}
|
||
|
return std::log1p(std::exp(x));
|
||
|
}
|
||
|
|
||
|
template <typename T> T multiply_log(T a, T b) {
|
||
|
if (a == 0 && b == 0)
|
||
|
return 0;
|
||
|
return a * std::log(b);
|
||
|
}
|
||
|
|
||
|
template <typename T> T inf() { return std::numeric_limits<T>::infinity(); }
|
||
|
|
||
|
template <typename T> T log_sum_exp(T const a, T const b) {
|
||
|
if (a == -inf<T>()) {
|
||
|
return b;
|
||
|
}
|
||
|
if (a == inf<T>() && b == inf<T>()) {
|
||
|
return inf<T>();
|
||
|
}
|
||
|
if (a > b) {
|
||
|
return a + log1p_exp(b - a);
|
||
|
}
|
||
|
return b + log1p_exp(a - b);
|
||
|
}
|
||
|
|
||
|
/* Log of the modified Bessel function of the first kind,
|
||
|
* which is better known as the Bessel I function. See
|
||
|
* modified_bessel_first_kind.hpp for the function definition.
|
||
|
* The derivatives are known to be incorrect for v = 0 because a
|
||
|
* simple constant 0 is returned.
|
||
|
*
|
||
|
* @tparam T common type for calculation
|
||
|
* @param v Order, can be a non-integer but must be at least -1
|
||
|
* @param z Real non-negative number
|
||
|
* @throws std::domain_error if either v or z is NaN, z is
|
||
|
* negative, or v is less than -1
|
||
|
* @return log of Bessel I function
|
||
|
*/
|
||
|
template <typename T> T log_modified_bessel_first_kind(T const v, T const z) {
|
||
|
using boost::math::tools::evaluate_polynomial;
|
||
|
using std::log;
|
||
|
using std::pow;
|
||
|
using std::sqrt;
|
||
|
static const double LOG_TWO = std::log(2.0);
|
||
|
static const double EPSILON = std::numeric_limits<double>::epsilon();
|
||
|
static const double TWO_PI = 2.0 * boost::math::constants::pi<double>();
|
||
|
|
||
|
if (z == 0) {
|
||
|
if (v == 0) {
|
||
|
return 0.0;
|
||
|
}
|
||
|
if (v > 0) {
|
||
|
return -std::numeric_limits<T>::infinity();
|
||
|
}
|
||
|
return std::numeric_limits<T>::infinity();
|
||
|
}
|
||
|
if (std::isinf(z)) {
|
||
|
return z;
|
||
|
}
|
||
|
if (v == 0) {
|
||
|
// Modified Bessel function of the first kind of order zero
|
||
|
// we use the approximating forms derived in:
|
||
|
// "Rational Approximations for the Modified Bessel Function of the
|
||
|
// First Kind -- I0(x) for Computations with Double Precision"
|
||
|
// by Pavel Holoborodko, see
|
||
|
// http://www.advanpix.com/2015/11/11/rational-approximations-for-the-modified-bessel-function-of-the-first-kind-i0-computations-double-precision
|
||
|
// The actual coefficients used are [Boost's] own, and extend
|
||
|
// Pavel's work to precisions other than double.
|
||
|
|
||
|
if (z < 7.75) {
|
||
|
// Bessel I0 over[10 ^ -16, 7.75]
|
||
|
// Max error in interpolated form : 3.042e-18
|
||
|
// Max Error found at double precision = Poly : 5.106609e-16
|
||
|
// Cheb : 5.239199e-16
|
||
|
static const double P[] = {
|
||
|
1.00000000000000000e+00, 2.49999999999999909e-01,
|
||
|
2.77777777777782257e-02, 1.73611111111023792e-03,
|
||
|
6.94444444453352521e-05, 1.92901234513219920e-06,
|
||
|
3.93675991102510739e-08, 6.15118672704439289e-10,
|
||
|
7.59407002058973446e-12, 7.59389793369836367e-14,
|
||
|
6.27767773636292611e-16, 4.34709704153272287e-18,
|
||
|
2.63417742690109154e-20, 1.13943037744822825e-22,
|
||
|
9.07926920085624812e-25};
|
||
|
return log1p_exp(multiply_log(2.0, z) - log(4.0) +
|
||
|
log(evaluate_polynomial(P, 0.25 * square(z))));
|
||
|
}
|
||
|
if (z < 500) {
|
||
|
// Max error in interpolated form : 1.685e-16
|
||
|
// Max Error found at double precision = Poly : 2.575063e-16
|
||
|
// Cheb : 2.247615e+00
|
||
|
static const double P[] = {
|
||
|
3.98942280401425088e-01, 4.98677850604961985e-02,
|
||
|
2.80506233928312623e-02, 2.92211225166047873e-02,
|
||
|
4.44207299493659561e-02, 1.30970574605856719e-01,
|
||
|
-3.35052280231727022e+00, 2.33025711583514727e+02,
|
||
|
-1.13366350697172355e+04, 4.24057674317867331e+05,
|
||
|
-1.23157028595698731e+07, 2.80231938155267516e+08,
|
||
|
-5.01883999713777929e+09, 7.08029243015109113e+10,
|
||
|
-7.84261082124811106e+11, 6.76825737854096565e+12,
|
||
|
-4.49034849696138065e+13, 2.24155239966958995e+14,
|
||
|
-8.13426467865659318e+14, 2.02391097391687777e+15,
|
||
|
-3.08675715295370878e+15, 2.17587543863819074e+15};
|
||
|
return z + log(evaluate_polynomial(P, 1 / z)) - multiply_log(0.5, z);
|
||
|
}
|
||
|
// Max error in interpolated form : 2.437e-18
|
||
|
// Max Error found at double precision = Poly : 1.216719e-16
|
||
|
static const double P[] = {3.98942280401432905e-01, 4.98677850491434560e-02,
|
||
|
2.80506308916506102e-02, 2.92179096853915176e-02,
|
||
|
4.53371208762579442e-02};
|
||
|
return z + log(evaluate_polynomial(P, 1 / z)) - multiply_log(0.5, z);
|
||
|
}
|
||
|
if (v == 1) { // WARNING: will not autodiff for v = 1 correctly
|
||
|
// modified from Boost's bessel_i1_imp in the double precision case
|
||
|
// see credits above in the v == 0 case
|
||
|
if (z < 7.75) {
|
||
|
// Bessel I0 over[10 ^ -16, 7.75]
|
||
|
// Max error in interpolated form: 5.639e-17
|
||
|
// Max Error found at double precision = Poly: 1.795559e-16
|
||
|
|
||
|
static const double P[] = {
|
||
|
8.333333333333333803e-02, 6.944444444444341983e-03,
|
||
|
3.472222222225921045e-04, 1.157407407354987232e-05,
|
||
|
2.755731926254790268e-07, 4.920949692800671435e-09,
|
||
|
6.834657311305621830e-11, 7.593969849687574339e-13,
|
||
|
6.904822652741917551e-15, 5.220157095351373194e-17,
|
||
|
3.410720494727771276e-19, 1.625212890947171108e-21,
|
||
|
1.332898928162290861e-23};
|
||
|
T a = square(z) * 0.25;
|
||
|
T Q[3] = {1, 0.5, evaluate_polynomial(P, a)};
|
||
|
return log(z) + log(evaluate_polynomial(Q, a)) - LOG_TWO;
|
||
|
}
|
||
|
if (z < 500) {
|
||
|
// Max error in interpolated form: 1.796e-16
|
||
|
// Max Error found at double precision = Poly: 2.898731e-16
|
||
|
|
||
|
static const double P[] = {
|
||
|
3.989422804014406054e-01, -1.496033551613111533e-01,
|
||
|
-4.675104253598537322e-02, -4.090895951581637791e-02,
|
||
|
-5.719036414430205390e-02, -1.528189554374492735e-01,
|
||
|
3.458284470977172076e+00, -2.426181371595021021e+02,
|
||
|
1.178785865993440669e+04, -4.404655582443487334e+05,
|
||
|
1.277677779341446497e+07, -2.903390398236656519e+08,
|
||
|
5.192386898222206474e+09, -7.313784438967834057e+10,
|
||
|
8.087824484994859552e+11, -6.967602516005787001e+12,
|
||
|
4.614040809616582764e+13, -2.298849639457172489e+14,
|
||
|
8.325554073334618015e+14, -2.067285045778906105e+15,
|
||
|
3.146401654361325073e+15, -2.213318202179221945e+15};
|
||
|
return z + log(evaluate_polynomial(P, 1 / z)) - multiply_log(0.5, z);
|
||
|
}
|
||
|
// Max error in interpolated form: 1.320e-19
|
||
|
// Max Error found at double precision = Poly: 7.065357e-17
|
||
|
static const double P[] = {
|
||
|
3.989422804014314820e-01, -1.496033551467584157e-01,
|
||
|
-4.675105322571775911e-02, -4.090421597376992892e-02,
|
||
|
-5.843630344778927582e-02};
|
||
|
return z + log(evaluate_polynomial(P, 1 / z)) - multiply_log(0.5, z);
|
||
|
}
|
||
|
if (z > 100) {
|
||
|
// Boost does something like this in asymptotic_bessel_i_large_x
|
||
|
T lim = pow((square(v) + 2.5) / (2 * z), 3) / 24;
|
||
|
if (lim < (EPSILON * 10)) {
|
||
|
T s = 1;
|
||
|
T mu = 4 * square(v);
|
||
|
T ex = 8 * z;
|
||
|
T num = mu - 1;
|
||
|
T denom = ex;
|
||
|
s -= num / denom;
|
||
|
num *= mu - 9;
|
||
|
denom *= ex * 2;
|
||
|
s += num / denom;
|
||
|
num *= mu - 25;
|
||
|
denom *= ex * 3;
|
||
|
s -= num / denom;
|
||
|
s = z - log(sqrt(z * TWO_PI)) + log(s);
|
||
|
return s;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
T log_half_z = log(0.5 * z);
|
||
|
T lgam = (v > -1) ? lgamma(v + 1.0) : 0;
|
||
|
T lcons = (2.0 + v) * log_half_z;
|
||
|
T out;
|
||
|
if (v > -1) {
|
||
|
out = log_sum_exp(v * log_half_z - lgam, lcons - lgamma(v + 2));
|
||
|
lgam += log1p(v);
|
||
|
} else {
|
||
|
out = lcons;
|
||
|
}
|
||
|
|
||
|
double m = 2;
|
||
|
double lfac = 0;
|
||
|
T old_out;
|
||
|
do {
|
||
|
lfac += log(m);
|
||
|
lgam += log(v + m);
|
||
|
lcons += 2 * log_half_z;
|
||
|
old_out = out;
|
||
|
out = log_sum_exp(out, lcons - lfac - lgam); // underflows eventually
|
||
|
m++;
|
||
|
} while (out > old_out || out < old_out);
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
} // namespace CosmoTool
|
||
|
|
||
|
#endif
|