Update website

This commit is contained in:
Guilhem Lavaux 2024-11-19 09:35:33 +01:00
parent bb4b0f9be8
commit 011b183e28
4263 changed files with 3014 additions and 720369 deletions

View file

@ -1,855 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math;
use Brick\Math\Exception\DivisionByZeroException;
use Brick\Math\Exception\MathException;
use Brick\Math\Exception\NegativeNumberException;
use Brick\Math\Internal\Calculator;
/**
* Immutable, arbitrary-precision signed decimal numbers.
*
* @psalm-immutable
*/
final class BigDecimal extends BigNumber
{
/**
* The unscaled value of this decimal number.
*
* This is a string of digits with an optional leading minus sign.
* No leading zero must be present.
* No leading minus sign must be present if the value is 0.
*
* @var string
*/
private $value;
/**
* The scale (number of digits after the decimal point) of this decimal number.
*
* This must be zero or more.
*
* @var int
*/
private $scale;
/**
* Protected constructor. Use a factory method to obtain an instance.
*
* @param string $value The unscaled value, validated.
* @param int $scale The scale, validated.
*/
protected function __construct(string $value, int $scale = 0)
{
$this->value = $value;
$this->scale = $scale;
}
/**
* Creates a BigDecimal of the given value.
*
* @param BigNumber|int|float|string $value
*
* @return BigDecimal
*
* @throws MathException If the value cannot be converted to a BigDecimal.
*
* @psalm-pure
*/
public static function of($value) : BigNumber
{
return parent::of($value)->toBigDecimal();
}
/**
* Creates a BigDecimal from an unscaled value and a scale.
*
* Example: `(12345, 3)` will result in the BigDecimal `12.345`.
*
* @param BigNumber|int|float|string $value The unscaled value. Must be convertible to a BigInteger.
* @param int $scale The scale of the number, positive or zero.
*
* @return BigDecimal
*
* @throws \InvalidArgumentException If the scale is negative.
*
* @psalm-pure
*/
public static function ofUnscaledValue($value, int $scale = 0) : BigDecimal
{
if ($scale < 0) {
throw new \InvalidArgumentException('The scale cannot be negative.');
}
return new BigDecimal((string) BigInteger::of($value), $scale);
}
/**
* Returns a BigDecimal representing zero, with a scale of zero.
*
* @return BigDecimal
*
* @psalm-pure
*/
public static function zero() : BigDecimal
{
/** @psalm-suppress ImpureStaticVariable */
static $zero;
if ($zero === null) {
$zero = new BigDecimal('0');
}
return $zero;
}
/**
* Returns a BigDecimal representing one, with a scale of zero.
*
* @return BigDecimal
*
* @psalm-pure
*/
public static function one() : BigDecimal
{
/** @psalm-suppress ImpureStaticVariable */
static $one;
if ($one === null) {
$one = new BigDecimal('1');
}
return $one;
}
/**
* Returns a BigDecimal representing ten, with a scale of zero.
*
* @return BigDecimal
*
* @psalm-pure
*/
public static function ten() : BigDecimal
{
/** @psalm-suppress ImpureStaticVariable */
static $ten;
if ($ten === null) {
$ten = new BigDecimal('10');
}
return $ten;
}
/**
* Returns the sum of this number and the given one.
*
* The result has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The number to add. Must be convertible to a BigDecimal.
*
* @return BigDecimal The result.
*
* @throws MathException If the number is not valid, or is not convertible to a BigDecimal.
*/
public function plus($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0' && $that->scale <= $this->scale) {
return $this;
}
if ($this->value === '0' && $this->scale <= $that->scale) {
return $that;
}
[$a, $b] = $this->scaleValues($this, $that);
$value = Calculator::get()->add($a, $b);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the difference of this number and the given one.
*
* The result has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The number to subtract. Must be convertible to a BigDecimal.
*
* @return BigDecimal The result.
*
* @throws MathException If the number is not valid, or is not convertible to a BigDecimal.
*/
public function minus($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0' && $that->scale <= $this->scale) {
return $this;
}
[$a, $b] = $this->scaleValues($this, $that);
$value = Calculator::get()->sub($a, $b);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the product of this number and the given one.
*
* The result has a scale of `$this->scale + $that->scale`.
*
* @param BigNumber|int|float|string $that The multiplier. Must be convertible to a BigDecimal.
*
* @return BigDecimal The result.
*
* @throws MathException If the multiplier is not a valid number, or is not convertible to a BigDecimal.
*/
public function multipliedBy($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '1' && $that->scale === 0) {
return $this;
}
if ($this->value === '1' && $this->scale === 0) {
return $that;
}
$value = Calculator::get()->mul($this->value, $that->value);
$scale = $this->scale + $that->scale;
return new BigDecimal($value, $scale);
}
/**
* Returns the result of the division of this number by the given one, at the given scale.
*
* @param BigNumber|int|float|string $that The divisor.
* @param int|null $scale The desired scale, or null to use the scale of this number.
* @param int $roundingMode An optional rounding mode.
*
* @return BigDecimal
*
* @throws \InvalidArgumentException If the scale or rounding mode is invalid.
* @throws MathException If the number is invalid, is zero, or rounding was necessary.
*/
public function dividedBy($that, ?int $scale = null, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
if ($scale === null) {
$scale = $this->scale;
} elseif ($scale < 0) {
throw new \InvalidArgumentException('Scale cannot be negative.');
}
if ($that->value === '1' && $that->scale === 0 && $scale === $this->scale) {
return $this;
}
$p = $this->valueWithMinScale($that->scale + $scale);
$q = $that->valueWithMinScale($this->scale - $scale);
$result = Calculator::get()->divRound($p, $q, $roundingMode);
return new BigDecimal($result, $scale);
}
/**
* Returns the exact result of the division of this number by the given one.
*
* The scale of the result is automatically calculated to fit all the fraction digits.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @return BigDecimal The result.
*
* @throws MathException If the divisor is not a valid number, is not convertible to a BigDecimal, is zero,
* or the result yields an infinite number of digits.
*/
public function exactlyDividedBy($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->value === '0') {
throw DivisionByZeroException::divisionByZero();
}
[$a, $b] = $this->scaleValues($this, $that);
$d = \rtrim($b, '0');
$scale = \strlen($b) - \strlen($d);
$calculator = Calculator::get();
foreach ([5, 2] as $prime) {
for (;;) {
$lastDigit = (int) $d[-1];
if ($lastDigit % $prime !== 0) {
break;
}
$d = $calculator->divQ($d, (string) $prime);
$scale++;
}
}
return $this->dividedBy($that, $scale)->stripTrailingZeros();
}
/**
* Returns this number exponentiated to the given value.
*
* The result has a scale of `$this->scale * $exponent`.
*
* @param int $exponent The exponent.
*
* @return BigDecimal The result.
*
* @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000.
*/
public function power(int $exponent) : BigDecimal
{
if ($exponent === 0) {
return BigDecimal::one();
}
if ($exponent === 1) {
return $this;
}
if ($exponent < 0 || $exponent > Calculator::MAX_POWER) {
throw new \InvalidArgumentException(\sprintf(
'The exponent %d is not in the range 0 to %d.',
$exponent,
Calculator::MAX_POWER
));
}
return new BigDecimal(Calculator::get()->pow($this->value, $exponent), $this->scale * $exponent);
}
/**
* Returns the quotient of the division of this number by this given one.
*
* The quotient has a scale of `0`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @return BigDecimal The quotient.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function quotient($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
$quotient = Calculator::get()->divQ($p, $q);
return new BigDecimal($quotient, 0);
}
/**
* Returns the remainder of the division of this number by this given one.
*
* The remainder has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @return BigDecimal The remainder.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function remainder($that) : BigDecimal
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
$remainder = Calculator::get()->divR($p, $q);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
return new BigDecimal($remainder, $scale);
}
/**
* Returns the quotient and remainder of the division of this number by the given one.
*
* The quotient has a scale of `0`, and the remainder has a scale of `max($this->scale, $that->scale)`.
*
* @param BigNumber|int|float|string $that The divisor. Must be convertible to a BigDecimal.
*
* @return BigDecimal[] An array containing the quotient and the remainder.
*
* @throws MathException If the divisor is not a valid decimal number, or is zero.
*/
public function quotientAndRemainder($that) : array
{
$that = BigDecimal::of($that);
if ($that->isZero()) {
throw DivisionByZeroException::divisionByZero();
}
$p = $this->valueWithMinScale($that->scale);
$q = $that->valueWithMinScale($this->scale);
[$quotient, $remainder] = Calculator::get()->divQR($p, $q);
$scale = $this->scale > $that->scale ? $this->scale : $that->scale;
$quotient = new BigDecimal($quotient, 0);
$remainder = new BigDecimal($remainder, $scale);
return [$quotient, $remainder];
}
/**
* Returns the square root of this number, rounded down to the given number of decimals.
*
* @param int $scale
*
* @return BigDecimal
*
* @throws \InvalidArgumentException If the scale is negative.
* @throws NegativeNumberException If this number is negative.
*/
public function sqrt(int $scale) : BigDecimal
{
if ($scale < 0) {
throw new \InvalidArgumentException('Scale cannot be negative.');
}
if ($this->value === '0') {
return new BigDecimal('0', $scale);
}
if ($this->value[0] === '-') {
throw new NegativeNumberException('Cannot calculate the square root of a negative number.');
}
$value = $this->value;
$addDigits = 2 * $scale - $this->scale;
if ($addDigits > 0) {
// add zeros
$value .= \str_repeat('0', $addDigits);
} elseif ($addDigits < 0) {
// trim digits
if (-$addDigits >= \strlen($this->value)) {
// requesting a scale too low, will always yield a zero result
return new BigDecimal('0', $scale);
}
$value = \substr($value, 0, $addDigits);
}
$value = Calculator::get()->sqrt($value);
return new BigDecimal($value, $scale);
}
/**
* Returns a copy of this BigDecimal with the decimal point moved $n places to the left.
*
* @param int $n
*
* @return BigDecimal
*/
public function withPointMovedLeft(int $n) : BigDecimal
{
if ($n === 0) {
return $this;
}
if ($n < 0) {
return $this->withPointMovedRight(-$n);
}
return new BigDecimal($this->value, $this->scale + $n);
}
/**
* Returns a copy of this BigDecimal with the decimal point moved $n places to the right.
*
* @param int $n
*
* @return BigDecimal
*/
public function withPointMovedRight(int $n) : BigDecimal
{
if ($n === 0) {
return $this;
}
if ($n < 0) {
return $this->withPointMovedLeft(-$n);
}
$value = $this->value;
$scale = $this->scale - $n;
if ($scale < 0) {
if ($value !== '0') {
$value .= \str_repeat('0', -$scale);
}
$scale = 0;
}
return new BigDecimal($value, $scale);
}
/**
* Returns a copy of this BigDecimal with any trailing zeros removed from the fractional part.
*
* @return BigDecimal
*/
public function stripTrailingZeros() : BigDecimal
{
if ($this->scale === 0) {
return $this;
}
$trimmedValue = \rtrim($this->value, '0');
if ($trimmedValue === '') {
return BigDecimal::zero();
}
$trimmableZeros = \strlen($this->value) - \strlen($trimmedValue);
if ($trimmableZeros === 0) {
return $this;
}
if ($trimmableZeros > $this->scale) {
$trimmableZeros = $this->scale;
}
$value = \substr($this->value, 0, -$trimmableZeros);
$scale = $this->scale - $trimmableZeros;
return new BigDecimal($value, $scale);
}
/**
* Returns the absolute value of this number.
*
* @return BigDecimal
*/
public function abs() : BigDecimal
{
return $this->isNegative() ? $this->negated() : $this;
}
/**
* Returns the negated value of this number.
*
* @return BigDecimal
*/
public function negated() : BigDecimal
{
return new BigDecimal(Calculator::get()->neg($this->value), $this->scale);
}
/**
* {@inheritdoc}
*/
public function compareTo($that) : int
{
$that = BigNumber::of($that);
if ($that instanceof BigInteger) {
$that = $that->toBigDecimal();
}
if ($that instanceof BigDecimal) {
[$a, $b] = $this->scaleValues($this, $that);
return Calculator::get()->cmp($a, $b);
}
return - $that->compareTo($this);
}
/**
* {@inheritdoc}
*/
public function getSign() : int
{
return ($this->value === '0') ? 0 : (($this->value[0] === '-') ? -1 : 1);
}
/**
* @return BigInteger
*/
public function getUnscaledValue() : BigInteger
{
return BigInteger::create($this->value);
}
/**
* @return int
*/
public function getScale() : int
{
return $this->scale;
}
/**
* Returns a string representing the integral part of this decimal number.
*
* Example: `-123.456` => `-123`.
*
* @return string
*/
public function getIntegralPart() : string
{
if ($this->scale === 0) {
return $this->value;
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, 0, -$this->scale);
}
/**
* Returns a string representing the fractional part of this decimal number.
*
* If the scale is zero, an empty string is returned.
*
* Examples: `-123.456` => '456', `123` => ''.
*
* @return string
*/
public function getFractionalPart() : string
{
if ($this->scale === 0) {
return '';
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, -$this->scale);
}
/**
* Returns whether this decimal number has a non-zero fractional part.
*
* @return bool
*/
public function hasNonZeroFractionalPart() : bool
{
return $this->getFractionalPart() !== \str_repeat('0', $this->scale);
}
/**
* {@inheritdoc}
*/
public function toBigInteger() : BigInteger
{
if ($this->scale === 0) {
$zeroScaleDecimal = $this;
} else {
$zeroScaleDecimal = $this->dividedBy(1, 0);
}
return BigInteger::create($zeroScaleDecimal->value);
}
/**
* {@inheritdoc}
*/
public function toBigDecimal() : BigDecimal
{
return $this;
}
/**
* {@inheritdoc}
*/
public function toBigRational() : BigRational
{
$numerator = BigInteger::create($this->value);
$denominator = BigInteger::create('1' . \str_repeat('0', $this->scale));
return BigRational::create($numerator, $denominator, false);
}
/**
* {@inheritdoc}
*/
public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal
{
if ($scale === $this->scale) {
return $this;
}
return $this->dividedBy(BigDecimal::one(), $scale, $roundingMode);
}
/**
* {@inheritdoc}
*/
public function toInt() : int
{
return $this->toBigInteger()->toInt();
}
/**
* {@inheritdoc}
*/
public function toFloat() : float
{
return (float) (string) $this;
}
/**
* {@inheritdoc}
*/
public function __toString() : string
{
if ($this->scale === 0) {
return $this->value;
}
$value = $this->getUnscaledValueWithLeadingZeros();
return \substr($value, 0, -$this->scale) . '.' . \substr($value, -$this->scale);
}
/**
* This method is required by interface Serializable and SHOULD NOT be accessed directly.
*
* @internal
*
* @return string
*/
public function serialize() : string
{
return $this->value . ':' . $this->scale;
}
/**
* This method is only here to implement interface Serializable and cannot be accessed directly.
*
* @internal
*
* @param string $value
*
* @return void
*
* @throws \LogicException
*/
public function unserialize($value) : void
{
if (isset($this->value)) {
throw new \LogicException('unserialize() is an internal function, it must not be called directly.');
}
[$value, $scale] = \explode(':', $value);
$this->value = $value;
$this->scale = (int) $scale;
}
/**
* Puts the internal values of the given decimal numbers on the same scale.
*
* @param BigDecimal $x The first decimal number.
* @param BigDecimal $y The second decimal number.
*
* @return array{0: string, 1: string} The scaled integer values of $x and $y.
*/
private function scaleValues(BigDecimal $x, BigDecimal $y) : array
{
$a = $x->value;
$b = $y->value;
if ($b !== '0' && $x->scale > $y->scale) {
$b .= \str_repeat('0', $x->scale - $y->scale);
} elseif ($a !== '0' && $x->scale < $y->scale) {
$a .= \str_repeat('0', $y->scale - $x->scale);
}
return [$a, $b];
}
/**
* @param int $scale
*
* @return string
*/
private function valueWithMinScale(int $scale) : string
{
$value = $this->value;
if ($this->value !== '0' && $scale > $this->scale) {
$value .= \str_repeat('0', $scale - $this->scale);
}
return $value;
}
/**
* Adds leading zeros if necessary to the unscaled value to represent the full decimal number.
*
* @return string
*/
private function getUnscaledValueWithLeadingZeros() : string
{
$value = $this->value;
$targetLength = $this->scale + 1;
$negative = ($value[0] === '-');
$length = \strlen($value);
if ($negative) {
$length--;
}
if ($length >= $targetLength) {
return $this->value;
}
if ($negative) {
$value = \substr($value, 1);
}
$value = \str_pad($value, $targetLength, '0', STR_PAD_LEFT);
if ($negative) {
$value = '-' . $value;
}
return $value;
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,528 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math;
use Brick\Math\Exception\DivisionByZeroException;
use Brick\Math\Exception\MathException;
use Brick\Math\Exception\NumberFormatException;
use Brick\Math\Exception\RoundingNecessaryException;
/**
* Common interface for arbitrary-precision rational numbers.
*
* @psalm-immutable
*/
abstract class BigNumber implements \Serializable, \JsonSerializable
{
/**
* The regular expression used to parse integer, decimal and rational numbers.
*
* @var string
*/
private const PARSE_REGEXP =
'/^' .
'(?<integral>[\-\+]?[0-9]+)' .
'(?:' .
'(?:' .
'(?:\.(?<fractional>[0-9]+))?' .
'(?:[eE](?<exponent>[\-\+]?[0-9]+))?' .
')' . '|' . '(?:' .
'(?:\/(?<denominator>[0-9]+))?' .
')' .
')?' .
'$/';
/**
* Creates a BigNumber of the given value.
*
* The concrete return type is dependent on the given value, with the following rules:
*
* - BigNumber instances are returned as is
* - integer numbers are returned as BigInteger
* - floating point numbers are converted to a string then parsed as such
* - strings containing a `/` character are returned as BigRational
* - strings containing a `.` character or using an exponential notation are returned as BigDecimal
* - strings containing only digits with an optional leading `+` or `-` sign are returned as BigInteger
*
* @param BigNumber|int|float|string $value
*
* @return BigNumber
*
* @throws NumberFormatException If the format of the number is not valid.
* @throws DivisionByZeroException If the value represents a rational number with a denominator of zero.
*
* @psalm-pure
*/
public static function of($value) : BigNumber
{
if ($value instanceof BigNumber) {
return $value;
}
if (\is_int($value)) {
return new BigInteger((string) $value);
}
if (\is_float($value)) {
$value = self::floatToString($value);
} else {
$value = (string) $value;
}
if (\preg_match(self::PARSE_REGEXP, $value, $matches) !== 1) {
throw new NumberFormatException(\sprintf('The given value "%s" does not represent a valid number.', $value));
}
if (isset($matches['denominator'])) {
$numerator = self::cleanUp($matches['integral']);
$denominator = \ltrim($matches['denominator'], '0');
if ($denominator === '') {
throw DivisionByZeroException::denominatorMustNotBeZero();
}
return new BigRational(new BigInteger($numerator), new BigInteger($denominator), false);
}
if (isset($matches['fractional']) || isset($matches['exponent'])) {
$fractional = isset($matches['fractional']) ? $matches['fractional'] : '';
$exponent = isset($matches['exponent']) ? (int) $matches['exponent'] : 0;
$unscaledValue = self::cleanUp($matches['integral'] . $fractional);
$scale = \strlen($fractional) - $exponent;
if ($scale < 0) {
if ($unscaledValue !== '0') {
$unscaledValue .= \str_repeat('0', - $scale);
}
$scale = 0;
}
return new BigDecimal($unscaledValue, $scale);
}
$integral = self::cleanUp($matches['integral']);
return new BigInteger($integral);
}
/**
* Safely converts float to string, avoiding locale-dependent issues.
*
* @see https://github.com/brick/math/pull/20
*
* @param float $float
*
* @return string
*
* @psalm-pure
* @psalm-suppress ImpureFunctionCall
*/
private static function floatToString(float $float) : string
{
$currentLocale = \setlocale(LC_NUMERIC, '0');
\setlocale(LC_NUMERIC, 'C');
$result = (string) $float;
\setlocale(LC_NUMERIC, $currentLocale);
return $result;
}
/**
* Proxy method to access protected constructors from sibling classes.
*
* @internal
*
* @param mixed ...$args The arguments to the constructor.
*
* @return static
*
* @psalm-pure
*/
protected static function create(... $args) : BigNumber
{
/** @psalm-suppress TooManyArguments */
return new static(... $args);
}
/**
* Returns the minimum of the given values.
*
* @param BigNumber|int|float|string ...$values The numbers to compare. All the numbers need to be convertible
* to an instance of the class this method is called on.
*
* @return static The minimum value.
*
* @throws \InvalidArgumentException If no values are given.
* @throws MathException If an argument is not valid.
*
* @psalm-pure
*/
public static function min(...$values) : BigNumber
{
$min = null;
foreach ($values as $value) {
$value = static::of($value);
if ($min === null || $value->isLessThan($min)) {
$min = $value;
}
}
if ($min === null) {
throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.');
}
return $min;
}
/**
* Returns the maximum of the given values.
*
* @param BigNumber|int|float|string ...$values The numbers to compare. All the numbers need to be convertible
* to an instance of the class this method is called on.
*
* @return static The maximum value.
*
* @throws \InvalidArgumentException If no values are given.
* @throws MathException If an argument is not valid.
*
* @psalm-pure
*/
public static function max(...$values) : BigNumber
{
$max = null;
foreach ($values as $value) {
$value = static::of($value);
if ($max === null || $value->isGreaterThan($max)) {
$max = $value;
}
}
if ($max === null) {
throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.');
}
return $max;
}
/**
* Returns the sum of the given values.
*
* @param BigNumber|int|float|string ...$values The numbers to add. All the numbers need to be convertible
* to an instance of the class this method is called on.
*
* @return static The sum.
*
* @throws \InvalidArgumentException If no values are given.
* @throws MathException If an argument is not valid.
*
* @psalm-pure
*/
public static function sum(...$values) : BigNumber
{
/** @var BigNumber|null $sum */
$sum = null;
foreach ($values as $value) {
$value = static::of($value);
if ($sum === null) {
$sum = $value;
} else {
$sum = self::add($sum, $value);
}
}
if ($sum === null) {
throw new \InvalidArgumentException(__METHOD__ . '() expects at least one value.');
}
return $sum;
}
/**
* Adds two BigNumber instances in the correct order to avoid a RoundingNecessaryException.
*
* @todo This could be better resolved by creating an abstract protected method in BigNumber, and leaving to
* concrete classes the responsibility to perform the addition themselves or delegate it to the given number,
* depending on their ability to perform the operation. This will also require a version bump because we're
* potentially breaking custom BigNumber implementations (if any...)
*
* @param BigNumber $a
* @param BigNumber $b
*
* @return BigNumber
*
* @psalm-pure
*/
private static function add(BigNumber $a, BigNumber $b) : BigNumber
{
if ($a instanceof BigRational) {
return $a->plus($b);
}
if ($b instanceof BigRational) {
return $b->plus($a);
}
if ($a instanceof BigDecimal) {
return $a->plus($b);
}
if ($b instanceof BigDecimal) {
return $b->plus($a);
}
/** @var BigInteger $a */
return $a->plus($b);
}
/**
* Removes optional leading zeros and + sign from the given number.
*
* @param string $number The number, validated as a non-empty string of digits with optional sign.
*
* @return string
*
* @psalm-pure
*/
private static function cleanUp(string $number) : string
{
$firstChar = $number[0];
if ($firstChar === '+' || $firstChar === '-') {
$number = \substr($number, 1);
}
$number = \ltrim($number, '0');
if ($number === '') {
return '0';
}
if ($firstChar === '-') {
return '-' . $number;
}
return $number;
}
/**
* Checks if this number is equal to the given one.
*
* @param BigNumber|int|float|string $that
*
* @return bool
*/
public function isEqualTo($that) : bool
{
return $this->compareTo($that) === 0;
}
/**
* Checks if this number is strictly lower than the given one.
*
* @param BigNumber|int|float|string $that
*
* @return bool
*/
public function isLessThan($that) : bool
{
return $this->compareTo($that) < 0;
}
/**
* Checks if this number is lower than or equal to the given one.
*
* @param BigNumber|int|float|string $that
*
* @return bool
*/
public function isLessThanOrEqualTo($that) : bool
{
return $this->compareTo($that) <= 0;
}
/**
* Checks if this number is strictly greater than the given one.
*
* @param BigNumber|int|float|string $that
*
* @return bool
*/
public function isGreaterThan($that) : bool
{
return $this->compareTo($that) > 0;
}
/**
* Checks if this number is greater than or equal to the given one.
*
* @param BigNumber|int|float|string $that
*
* @return bool
*/
public function isGreaterThanOrEqualTo($that) : bool
{
return $this->compareTo($that) >= 0;
}
/**
* Checks if this number equals zero.
*
* @return bool
*/
public function isZero() : bool
{
return $this->getSign() === 0;
}
/**
* Checks if this number is strictly negative.
*
* @return bool
*/
public function isNegative() : bool
{
return $this->getSign() < 0;
}
/**
* Checks if this number is negative or zero.
*
* @return bool
*/
public function isNegativeOrZero() : bool
{
return $this->getSign() <= 0;
}
/**
* Checks if this number is strictly positive.
*
* @return bool
*/
public function isPositive() : bool
{
return $this->getSign() > 0;
}
/**
* Checks if this number is positive or zero.
*
* @return bool
*/
public function isPositiveOrZero() : bool
{
return $this->getSign() >= 0;
}
/**
* Returns the sign of this number.
*
* @return int -1 if the number is negative, 0 if zero, 1 if positive.
*/
abstract public function getSign() : int;
/**
* Compares this number to the given one.
*
* @param BigNumber|int|float|string $that
*
* @return int [-1,0,1] If `$this` is lower than, equal to, or greater than `$that`.
*
* @throws MathException If the number is not valid.
*/
abstract public function compareTo($that) : int;
/**
* Converts this number to a BigInteger.
*
* @return BigInteger The converted number.
*
* @throws RoundingNecessaryException If this number cannot be converted to a BigInteger without rounding.
*/
abstract public function toBigInteger() : BigInteger;
/**
* Converts this number to a BigDecimal.
*
* @return BigDecimal The converted number.
*
* @throws RoundingNecessaryException If this number cannot be converted to a BigDecimal without rounding.
*/
abstract public function toBigDecimal() : BigDecimal;
/**
* Converts this number to a BigRational.
*
* @return BigRational The converted number.
*/
abstract public function toBigRational() : BigRational;
/**
* Converts this number to a BigDecimal with the given scale, using rounding if necessary.
*
* @param int $scale The scale of the resulting `BigDecimal`.
* @param int $roundingMode A `RoundingMode` constant.
*
* @return BigDecimal
*
* @throws RoundingNecessaryException If this number cannot be converted to the given scale without rounding.
* This only applies when RoundingMode::UNNECESSARY is used.
*/
abstract public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal;
/**
* Returns the exact value of this number as a native integer.
*
* If this number cannot be converted to a native integer without losing precision, an exception is thrown.
* Note that the acceptable range for an integer depends on the platform and differs for 32-bit and 64-bit.
*
* @return int The converted value.
*
* @throws MathException If this number cannot be exactly converted to a native integer.
*/
abstract public function toInt() : int;
/**
* Returns an approximation of this number as a floating-point value.
*
* Note that this method can discard information as the precision of a floating-point value
* is inherently limited.
*
* If the number is greater than the largest representable floating point number, positive infinity is returned.
* If the number is less than the smallest representable floating point number, negative infinity is returned.
*
* @return float The converted value.
*/
abstract public function toFloat() : float;
/**
* Returns a string representation of this number.
*
* The output of this method can be parsed by the `of()` factory method;
* this will yield an object equal to this one, without any information loss.
*
* @return string
*/
abstract public function __toString() : string;
/**
* {@inheritdoc}
*/
public function jsonSerialize() : string
{
return $this->__toString();
}
}

View file

@ -1,479 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math;
use Brick\Math\Exception\DivisionByZeroException;
use Brick\Math\Exception\MathException;
use Brick\Math\Exception\NumberFormatException;
use Brick\Math\Exception\RoundingNecessaryException;
/**
* An arbitrarily large rational number.
*
* This class is immutable.
*
* @psalm-immutable
*/
final class BigRational extends BigNumber
{
/**
* The numerator.
*
* @var BigInteger
*/
private $numerator;
/**
* The denominator. Always strictly positive.
*
* @var BigInteger
*/
private $denominator;
/**
* Protected constructor. Use a factory method to obtain an instance.
*
* @param BigInteger $numerator The numerator.
* @param BigInteger $denominator The denominator.
* @param bool $checkDenominator Whether to check the denominator for negative and zero.
*
* @throws DivisionByZeroException If the denominator is zero.
*/
protected function __construct(BigInteger $numerator, BigInteger $denominator, bool $checkDenominator)
{
if ($checkDenominator) {
if ($denominator->isZero()) {
throw DivisionByZeroException::denominatorMustNotBeZero();
}
if ($denominator->isNegative()) {
$numerator = $numerator->negated();
$denominator = $denominator->negated();
}
}
$this->numerator = $numerator;
$this->denominator = $denominator;
}
/**
* Creates a BigRational of the given value.
*
* @param BigNumber|int|float|string $value
*
* @return BigRational
*
* @throws MathException If the value cannot be converted to a BigRational.
*
* @psalm-pure
*/
public static function of($value) : BigNumber
{
return parent::of($value)->toBigRational();
}
/**
* Creates a BigRational out of a numerator and a denominator.
*
* If the denominator is negative, the signs of both the numerator and the denominator
* will be inverted to ensure that the denominator is always positive.
*
* @param BigNumber|int|float|string $numerator The numerator. Must be convertible to a BigInteger.
* @param BigNumber|int|float|string $denominator The denominator. Must be convertible to a BigInteger.
*
* @return BigRational
*
* @throws NumberFormatException If an argument does not represent a valid number.
* @throws RoundingNecessaryException If an argument represents a non-integer number.
* @throws DivisionByZeroException If the denominator is zero.
*
* @psalm-pure
*/
public static function nd($numerator, $denominator) : BigRational
{
$numerator = BigInteger::of($numerator);
$denominator = BigInteger::of($denominator);
return new BigRational($numerator, $denominator, true);
}
/**
* Returns a BigRational representing zero.
*
* @return BigRational
*
* @psalm-pure
*/
public static function zero() : BigRational
{
/** @psalm-suppress ImpureStaticVariable */
static $zero;
if ($zero === null) {
$zero = new BigRational(BigInteger::zero(), BigInteger::one(), false);
}
return $zero;
}
/**
* Returns a BigRational representing one.
*
* @return BigRational
*
* @psalm-pure
*/
public static function one() : BigRational
{
/** @psalm-suppress ImpureStaticVariable */
static $one;
if ($one === null) {
$one = new BigRational(BigInteger::one(), BigInteger::one(), false);
}
return $one;
}
/**
* Returns a BigRational representing ten.
*
* @return BigRational
*
* @psalm-pure
*/
public static function ten() : BigRational
{
/** @psalm-suppress ImpureStaticVariable */
static $ten;
if ($ten === null) {
$ten = new BigRational(BigInteger::ten(), BigInteger::one(), false);
}
return $ten;
}
/**
* @return BigInteger
*/
public function getNumerator() : BigInteger
{
return $this->numerator;
}
/**
* @return BigInteger
*/
public function getDenominator() : BigInteger
{
return $this->denominator;
}
/**
* Returns the quotient of the division of the numerator by the denominator.
*
* @return BigInteger
*/
public function quotient() : BigInteger
{
return $this->numerator->quotient($this->denominator);
}
/**
* Returns the remainder of the division of the numerator by the denominator.
*
* @return BigInteger
*/
public function remainder() : BigInteger
{
return $this->numerator->remainder($this->denominator);
}
/**
* Returns the quotient and remainder of the division of the numerator by the denominator.
*
* @return BigInteger[]
*/
public function quotientAndRemainder() : array
{
return $this->numerator->quotientAndRemainder($this->denominator);
}
/**
* Returns the sum of this number and the given one.
*
* @param BigNumber|int|float|string $that The number to add.
*
* @return BigRational The result.
*
* @throws MathException If the number is not valid.
*/
public function plus($that) : BigRational
{
$that = BigRational::of($that);
$numerator = $this->numerator->multipliedBy($that->denominator);
$numerator = $numerator->plus($that->numerator->multipliedBy($this->denominator));
$denominator = $this->denominator->multipliedBy($that->denominator);
return new BigRational($numerator, $denominator, false);
}
/**
* Returns the difference of this number and the given one.
*
* @param BigNumber|int|float|string $that The number to subtract.
*
* @return BigRational The result.
*
* @throws MathException If the number is not valid.
*/
public function minus($that) : BigRational
{
$that = BigRational::of($that);
$numerator = $this->numerator->multipliedBy($that->denominator);
$numerator = $numerator->minus($that->numerator->multipliedBy($this->denominator));
$denominator = $this->denominator->multipliedBy($that->denominator);
return new BigRational($numerator, $denominator, false);
}
/**
* Returns the product of this number and the given one.
*
* @param BigNumber|int|float|string $that The multiplier.
*
* @return BigRational The result.
*
* @throws MathException If the multiplier is not a valid number.
*/
public function multipliedBy($that) : BigRational
{
$that = BigRational::of($that);
$numerator = $this->numerator->multipliedBy($that->numerator);
$denominator = $this->denominator->multipliedBy($that->denominator);
return new BigRational($numerator, $denominator, false);
}
/**
* Returns the result of the division of this number by the given one.
*
* @param BigNumber|int|float|string $that The divisor.
*
* @return BigRational The result.
*
* @throws MathException If the divisor is not a valid number, or is zero.
*/
public function dividedBy($that) : BigRational
{
$that = BigRational::of($that);
$numerator = $this->numerator->multipliedBy($that->denominator);
$denominator = $this->denominator->multipliedBy($that->numerator);
return new BigRational($numerator, $denominator, true);
}
/**
* Returns this number exponentiated to the given value.
*
* @param int $exponent The exponent.
*
* @return BigRational The result.
*
* @throws \InvalidArgumentException If the exponent is not in the range 0 to 1,000,000.
*/
public function power(int $exponent) : BigRational
{
if ($exponent === 0) {
$one = BigInteger::one();
return new BigRational($one, $one, false);
}
if ($exponent === 1) {
return $this;
}
return new BigRational(
$this->numerator->power($exponent),
$this->denominator->power($exponent),
false
);
}
/**
* Returns the reciprocal of this BigRational.
*
* The reciprocal has the numerator and denominator swapped.
*
* @return BigRational
*
* @throws DivisionByZeroException If the numerator is zero.
*/
public function reciprocal() : BigRational
{
return new BigRational($this->denominator, $this->numerator, true);
}
/**
* Returns the absolute value of this BigRational.
*
* @return BigRational
*/
public function abs() : BigRational
{
return new BigRational($this->numerator->abs(), $this->denominator, false);
}
/**
* Returns the negated value of this BigRational.
*
* @return BigRational
*/
public function negated() : BigRational
{
return new BigRational($this->numerator->negated(), $this->denominator, false);
}
/**
* Returns the simplified value of this BigRational.
*
* @return BigRational
*/
public function simplified() : BigRational
{
$gcd = $this->numerator->gcd($this->denominator);
$numerator = $this->numerator->quotient($gcd);
$denominator = $this->denominator->quotient($gcd);
return new BigRational($numerator, $denominator, false);
}
/**
* {@inheritdoc}
*/
public function compareTo($that) : int
{
return $this->minus($that)->getSign();
}
/**
* {@inheritdoc}
*/
public function getSign() : int
{
return $this->numerator->getSign();
}
/**
* {@inheritdoc}
*/
public function toBigInteger() : BigInteger
{
$simplified = $this->simplified();
if (! $simplified->denominator->isEqualTo(1)) {
throw new RoundingNecessaryException('This rational number cannot be represented as an integer value without rounding.');
}
return $simplified->numerator;
}
/**
* {@inheritdoc}
*/
public function toBigDecimal() : BigDecimal
{
return $this->numerator->toBigDecimal()->exactlyDividedBy($this->denominator);
}
/**
* {@inheritdoc}
*/
public function toBigRational() : BigRational
{
return $this;
}
/**
* {@inheritdoc}
*/
public function toScale(int $scale, int $roundingMode = RoundingMode::UNNECESSARY) : BigDecimal
{
return $this->numerator->toBigDecimal()->dividedBy($this->denominator, $scale, $roundingMode);
}
/**
* {@inheritdoc}
*/
public function toInt() : int
{
return $this->toBigInteger()->toInt();
}
/**
* {@inheritdoc}
*/
public function toFloat() : float
{
return $this->numerator->toFloat() / $this->denominator->toFloat();
}
/**
* {@inheritdoc}
*/
public function __toString() : string
{
$numerator = (string) $this->numerator;
$denominator = (string) $this->denominator;
if ($denominator === '1') {
return $numerator;
}
return $this->numerator . '/' . $this->denominator;
}
/**
* This method is required by interface Serializable and SHOULD NOT be accessed directly.
*
* @internal
*
* @return string
*/
public function serialize() : string
{
return $this->numerator . '/' . $this->denominator;
}
/**
* This method is only here to implement interface Serializable and cannot be accessed directly.
*
* @internal
*
* @param string $value
*
* @return void
*
* @throws \LogicException
*/
public function unserialize($value) : void
{
if (isset($this->numerator)) {
throw new \LogicException('unserialize() is an internal function, it must not be called directly.');
}
[$numerator, $denominator] = \explode('/', $value);
$this->numerator = BigInteger::of($numerator);
$this->denominator = BigInteger::of($denominator);
}
}

View file

@ -1,41 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
/**
* Exception thrown when a division by zero occurs.
*/
class DivisionByZeroException extends MathException
{
/**
* @return DivisionByZeroException
*
* @psalm-pure
*/
public static function divisionByZero() : DivisionByZeroException
{
return new self('Division by zero.');
}
/**
* @return DivisionByZeroException
*
* @psalm-pure
*/
public static function modulusMustNotBeZero() : DivisionByZeroException
{
return new self('The modulus must not be zero.');
}
/**
* @return DivisionByZeroException
*
* @psalm-pure
*/
public static function denominatorMustNotBeZero() : DivisionByZeroException
{
return new self('The denominator of a rational number cannot be zero.');
}
}

View file

@ -1,27 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
use Brick\Math\BigInteger;
/**
* Exception thrown when an integer overflow occurs.
*/
class IntegerOverflowException extends MathException
{
/**
* @param BigInteger $value
*
* @return IntegerOverflowException
*
* @psalm-pure
*/
public static function toIntOverflow(BigInteger $value) : IntegerOverflowException
{
$message = '%s is out of range %d to %d and cannot be represented as an integer.';
return new self(\sprintf($message, (string) $value, PHP_INT_MIN, PHP_INT_MAX));
}
}

View file

@ -1,14 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
/**
* Base class for all math exceptions.
*
* This class is abstract to ensure that only fine-grained exceptions are thrown throughout the code.
*/
class MathException extends \RuntimeException
{
}

View file

@ -1,12 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
/**
* Exception thrown when attempting to perform an unsupported operation, such as a square root, on a negative number.
*/
class NegativeNumberException extends MathException
{
}

View file

@ -1,35 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
/**
* Exception thrown when attempting to create a number from a string with an invalid format.
*/
class NumberFormatException extends MathException
{
/**
* @param string $char The failing character.
*
* @return NumberFormatException
*
* @psalm-pure
*/
public static function charNotInAlphabet(string $char) : self
{
$ord = \ord($char);
if ($ord < 32 || $ord > 126) {
$char = \strtoupper(\dechex($ord));
if ($ord < 10) {
$char = '0' . $char;
}
} else {
$char = '"' . $char . '"';
}
return new self(sprintf('Char %s is not a valid character in the given alphabet.', $char));
}
}

View file

@ -1,21 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Exception;
/**
* Exception thrown when a number cannot be represented at the requested scale without rounding.
*/
class RoundingNecessaryException extends MathException
{
/**
* @return RoundingNecessaryException
*
* @psalm-pure
*/
public static function roundingNecessary() : RoundingNecessaryException
{
return new self('Rounding is necessary to represent the result of the operation at this scale.');
}
}

View file

@ -1,756 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Internal;
use Brick\Math\Exception\RoundingNecessaryException;
use Brick\Math\RoundingMode;
/**
* Performs basic operations on arbitrary size integers.
*
* Unless otherwise specified, all parameters must be validated as non-empty strings of digits,
* without leading zero, and with an optional leading minus sign if the number is not zero.
*
* Any other parameter format will lead to undefined behaviour.
* All methods must return strings respecting this format, unless specified otherwise.
*
* @internal
*
* @psalm-immutable
*/
abstract class Calculator
{
/**
* The maximum exponent value allowed for the pow() method.
*/
public const MAX_POWER = 1000000;
/**
* The alphabet for converting from and to base 2 to 36, lowercase.
*/
public const ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz';
/**
* The Calculator instance in use.
*
* @var Calculator|null
*/
private static $instance;
/**
* Sets the Calculator instance to use.
*
* An instance is typically set only in unit tests: the autodetect is usually the best option.
*
* @param Calculator|null $calculator The calculator instance, or NULL to revert to autodetect.
*
* @return void
*/
final public static function set(?Calculator $calculator) : void
{
self::$instance = $calculator;
}
/**
* Returns the Calculator instance to use.
*
* If none has been explicitly set, the fastest available implementation will be returned.
*
* @return Calculator
*
* @psalm-pure
* @psalm-suppress ImpureStaticProperty
*/
final public static function get() : Calculator
{
if (self::$instance === null) {
/** @psalm-suppress ImpureMethodCall */
self::$instance = self::detect();
}
return self::$instance;
}
/**
* Returns the fastest available Calculator implementation.
*
* @codeCoverageIgnore
*
* @return Calculator
*/
private static function detect() : Calculator
{
if (\extension_loaded('gmp')) {
return new Calculator\GmpCalculator();
}
if (\extension_loaded('bcmath')) {
return new Calculator\BcMathCalculator();
}
return new Calculator\NativeCalculator();
}
/**
* Extracts the sign & digits of the operands.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return array{0: bool, 1: bool, 2: string, 3: string} Whether $a and $b are negative, followed by their digits.
*/
final protected function init(string $a, string $b) : array
{
return [
$aNeg = ($a[0] === '-'),
$bNeg = ($b[0] === '-'),
$aNeg ? \substr($a, 1) : $a,
$bNeg ? \substr($b, 1) : $b,
];
}
/**
* Returns the absolute value of a number.
*
* @param string $n The number.
*
* @return string The absolute value.
*/
final public function abs(string $n) : string
{
return ($n[0] === '-') ? \substr($n, 1) : $n;
}
/**
* Negates a number.
*
* @param string $n The number.
*
* @return string The negated value.
*/
final public function neg(string $n) : string
{
if ($n === '0') {
return '0';
}
if ($n[0] === '-') {
return \substr($n, 1);
}
return '-' . $n;
}
/**
* Compares two numbers.
*
* @param string $a The first number.
* @param string $b The second number.
*
* @return int [-1, 0, 1] If the first number is less than, equal to, or greater than the second number.
*/
final public function cmp(string $a, string $b) : int
{
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
if ($aNeg && ! $bNeg) {
return -1;
}
if ($bNeg && ! $aNeg) {
return 1;
}
$aLen = \strlen($aDig);
$bLen = \strlen($bDig);
if ($aLen < $bLen) {
$result = -1;
} elseif ($aLen > $bLen) {
$result = 1;
} else {
$result = $aDig <=> $bDig;
}
return $aNeg ? -$result : $result;
}
/**
* Adds two numbers.
*
* @param string $a The augend.
* @param string $b The addend.
*
* @return string The sum.
*/
abstract public function add(string $a, string $b) : string;
/**
* Subtracts two numbers.
*
* @param string $a The minuend.
* @param string $b The subtrahend.
*
* @return string The difference.
*/
abstract public function sub(string $a, string $b) : string;
/**
* Multiplies two numbers.
*
* @param string $a The multiplicand.
* @param string $b The multiplier.
*
* @return string The product.
*/
abstract public function mul(string $a, string $b) : string;
/**
* Returns the quotient of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The quotient.
*/
abstract public function divQ(string $a, string $b) : string;
/**
* Returns the remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string The remainder.
*/
abstract public function divR(string $a, string $b) : string;
/**
* Returns the quotient and remainder of the division of two numbers.
*
* @param string $a The dividend.
* @param string $b The divisor, must not be zero.
*
* @return string[] An array containing the quotient and remainder.
*/
abstract public function divQR(string $a, string $b) : array;
/**
* Exponentiates a number.
*
* @param string $a The base number.
* @param int $e The exponent, validated as an integer between 0 and MAX_POWER.
*
* @return string The power.
*/
abstract public function pow(string $a, int $e) : string;
/**
* @param string $a
* @param string $b The modulus; must not be zero.
*
* @return string
*/
public function mod(string $a, string $b) : string
{
return $this->divR($this->add($this->divR($a, $b), $b), $b);
}
/**
* Returns the modular multiplicative inverse of $x modulo $m.
*
* If $x has no multiplicative inverse mod m, this method must return null.
*
* This method can be overridden by the concrete implementation if the underlying library has built-in support.
*
* @param string $x
* @param string $m The modulus; must not be negative or zero.
*
* @return string|null
*/
public function modInverse(string $x, string $m) : ?string
{
if ($m === '1') {
return '0';
}
$modVal = $x;
if ($x[0] === '-' || ($this->cmp($this->abs($x), $m) >= 0)) {
$modVal = $this->mod($x, $m);
}
$x = '0';
$y = '0';
$g = $this->gcdExtended($modVal, $m, $x, $y);
if ($g !== '1') {
return null;
}
return $this->mod($this->add($this->mod($x, $m), $m), $m);
}
/**
* Raises a number into power with modulo.
*
* @param string $base The base number; must be positive or zero.
* @param string $exp The exponent; must be positive or zero.
* @param string $mod The modulus; must be strictly positive.
*
* @return string The power.
*/
abstract public function modPow(string $base, string $exp, string $mod) : string;
/**
* Returns the greatest common divisor of the two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for GCD calculations.
*
* @param string $a The first number.
* @param string $b The second number.
*
* @return string The GCD, always positive, or zero if both arguments are zero.
*/
public function gcd(string $a, string $b) : string
{
if ($a === '0') {
return $this->abs($b);
}
if ($b === '0') {
return $this->abs($a);
}
return $this->gcd($b, $this->divR($a, $b));
}
private function gcdExtended(string $a, string $b, string &$x, string &$y) : string
{
if ($a === '0') {
$x = '0';
$y = '1';
return $b;
}
$x1 = '0';
$y1 = '0';
$gcd = $this->gcdExtended($this->mod($b, $a), $a, $x1, $y1);
$x = $this->sub($y1, $this->mul($this->divQ($b, $a), $x1));
$y = $x1;
return $gcd;
}
/**
* Returns the square root of the given number, rounded down.
*
* The result is the largest x such that n.
* The input MUST NOT be negative.
*
* @param string $n The number.
*
* @return string The square root.
*/
abstract public function sqrt(string $n) : string;
/**
* Converts a number from an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number, positive or zero, non-empty, case-insensitively validated for the given base.
* @param int $base The base of the number, validated from 2 to 36.
*
* @return string The converted number, following the Calculator conventions.
*/
public function fromBase(string $number, int $base) : string
{
return $this->fromArbitraryBase(\strtolower($number), self::ALPHABET, $base);
}
/**
* Converts a number to an arbitrary base.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for base conversion.
*
* @param string $number The number to convert, following the Calculator conventions.
* @param int $base The base to convert to, validated from 2 to 36.
*
* @return string The converted number, lowercase.
*/
public function toBase(string $number, int $base) : string
{
$negative = ($number[0] === '-');
if ($negative) {
$number = \substr($number, 1);
}
$number = $this->toArbitraryBase($number, self::ALPHABET, $base);
if ($negative) {
return '-' . $number;
}
return $number;
}
/**
* Converts a non-negative number in an arbitrary base using a custom alphabet, to base 10.
*
* @param string $number The number to convert, validated as a non-empty string,
* containing only chars in the given alphabet/base.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base of the number, validated from 2 to alphabet length.
*
* @return string The number in base 10, following the Calculator conventions.
*/
final public function fromArbitraryBase(string $number, string $alphabet, int $base) : string
{
// remove leading "zeros"
$number = \ltrim($number, $alphabet[0]);
if ($number === '') {
return '0';
}
// optimize for "one"
if ($number === $alphabet[1]) {
return '1';
}
$result = '0';
$power = '1';
$base = (string) $base;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$index = \strpos($alphabet, $number[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, $base);
}
}
return $result;
}
/**
* Converts a non-negative number to an arbitrary base using a custom alphabet.
*
* @param string $number The number to convert, positive or zero, following the Calculator conventions.
* @param string $alphabet The alphabet that contains every digit, validated as 2 chars minimum.
* @param int $base The base to convert to, validated from 2 to alphabet length.
*
* @return string The converted number in the given alphabet.
*/
final public function toArbitraryBase(string $number, string $alphabet, int $base) : string
{
if ($number === '0') {
return $alphabet[0];
}
$base = (string) $base;
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, $base);
$remainder = (int) $remainder;
$result .= $alphabet[$remainder];
}
return \strrev($result);
}
/**
* Performs a rounded division.
*
* Rounding is performed when the remainder of the division is not zero.
*
* @param string $a The dividend.
* @param string $b The divisor.
* @param int $roundingMode The rounding mode.
*
* @return string
*
* @throws \InvalidArgumentException If the rounding mode is invalid.
* @throws RoundingNecessaryException If RoundingMode::UNNECESSARY is provided but rounding is necessary.
*/
final public function divRound(string $a, string $b, int $roundingMode) : string
{
[$quotient, $remainder] = $this->divQR($a, $b);
$hasDiscardedFraction = ($remainder !== '0');
$isPositiveOrZero = ($a[0] === '-') === ($b[0] === '-');
$discardedFractionSign = function() use ($remainder, $b) : int {
$r = $this->abs($this->mul($remainder, '2'));
$b = $this->abs($b);
return $this->cmp($r, $b);
};
$increment = false;
switch ($roundingMode) {
case RoundingMode::UNNECESSARY:
if ($hasDiscardedFraction) {
throw RoundingNecessaryException::roundingNecessary();
}
break;
case RoundingMode::UP:
$increment = $hasDiscardedFraction;
break;
case RoundingMode::DOWN:
break;
case RoundingMode::CEILING:
$increment = $hasDiscardedFraction && $isPositiveOrZero;
break;
case RoundingMode::FLOOR:
$increment = $hasDiscardedFraction && ! $isPositiveOrZero;
break;
case RoundingMode::HALF_UP:
$increment = $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_DOWN:
$increment = $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_CEILING:
$increment = $isPositiveOrZero ? $discardedFractionSign() >= 0 : $discardedFractionSign() > 0;
break;
case RoundingMode::HALF_FLOOR:
$increment = $isPositiveOrZero ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
case RoundingMode::HALF_EVEN:
$lastDigit = (int) $quotient[-1];
$lastDigitIsEven = ($lastDigit % 2 === 0);
$increment = $lastDigitIsEven ? $discardedFractionSign() > 0 : $discardedFractionSign() >= 0;
break;
default:
throw new \InvalidArgumentException('Invalid rounding mode.');
}
if ($increment) {
return $this->add($quotient, $isPositiveOrZero ? '1' : '-1');
}
return $quotient;
}
/**
* Calculates bitwise AND of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*
* @param string $a
* @param string $b
*
* @return string
*/
public function and(string $a, string $b) : string
{
return $this->bitwise('and', $a, $b);
}
/**
* Calculates bitwise OR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*
* @param string $a
* @param string $b
*
* @return string
*/
public function or(string $a, string $b) : string
{
return $this->bitwise('or', $a, $b);
}
/**
* Calculates bitwise XOR of two numbers.
*
* This method can be overridden by the concrete implementation if the underlying library
* has built-in support for bitwise operations.
*
* @param string $a
* @param string $b
*
* @return string
*/
public function xor(string $a, string $b) : string
{
return $this->bitwise('xor', $a, $b);
}
/**
* Performs a bitwise operation on a decimal number.
*
* @param string $operator The operator to use, must be "and", "or" or "xor".
* @param string $a The left operand.
* @param string $b The right operand.
*
* @return string
*/
private function bitwise(string $operator, string $a, string $b) : string
{
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$aBin = $this->toBinary($aDig);
$bBin = $this->toBinary($bDig);
$aLen = \strlen($aBin);
$bLen = \strlen($bBin);
if ($aLen > $bLen) {
$bBin = \str_repeat("\x00", $aLen - $bLen) . $bBin;
} elseif ($bLen > $aLen) {
$aBin = \str_repeat("\x00", $bLen - $aLen) . $aBin;
}
if ($aNeg) {
$aBin = $this->twosComplement($aBin);
}
if ($bNeg) {
$bBin = $this->twosComplement($bBin);
}
switch ($operator) {
case 'and':
$value = $aBin & $bBin;
$negative = ($aNeg and $bNeg);
break;
case 'or':
$value = $aBin | $bBin;
$negative = ($aNeg or $bNeg);
break;
case 'xor':
$value = $aBin ^ $bBin;
$negative = ($aNeg xor $bNeg);
break;
// @codeCoverageIgnoreStart
default:
throw new \InvalidArgumentException('Invalid bitwise operator.');
// @codeCoverageIgnoreEnd
}
if ($negative) {
$value = $this->twosComplement($value);
}
$result = $this->toDecimal($value);
return $negative ? $this->neg($result) : $result;
}
/**
* @param string $number A positive, binary number.
*
* @return string
*/
private function twosComplement(string $number) : string
{
$xor = \str_repeat("\xff", \strlen($number));
$number = $number ^ $xor;
for ($i = \strlen($number) - 1; $i >= 0; $i--) {
$byte = \ord($number[$i]);
if (++$byte !== 256) {
$number[$i] = \chr($byte);
break;
}
$number[$i] = "\x00";
if ($i === 0) {
$number = "\x01" . $number;
}
}
return $number;
}
/**
* Converts a decimal number to a binary string.
*
* @param string $number The number to convert, positive or zero, only digits.
*
* @return string
*/
private function toBinary(string $number) : string
{
$result = '';
while ($number !== '0') {
[$number, $remainder] = $this->divQR($number, '256');
$result .= \chr((int) $remainder);
}
return \strrev($result);
}
/**
* Returns the positive decimal representation of a binary number.
*
* @param string $bytes The bytes representing the number.
*
* @return string
*/
private function toDecimal(string $bytes) : string
{
$result = '0';
$power = '1';
for ($i = \strlen($bytes) - 1; $i >= 0; $i--) {
$index = \ord($bytes[$i]);
if ($index !== 0) {
$result = $this->add($result, ($index === 1)
? $power
: $this->mul($power, (string) $index)
);
}
if ($i !== 0) {
$power = $this->mul($power, '256');
}
}
return $result;
}
}

View file

@ -1,92 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Internal\Calculator;
use Brick\Math\Internal\Calculator;
/**
* Calculator implementation built around the bcmath library.
*
* @internal
*
* @psalm-immutable
*/
class BcMathCalculator extends Calculator
{
/**
* {@inheritdoc}
*/
public function add(string $a, string $b) : string
{
return \bcadd($a, $b, 0);
}
/**
* {@inheritdoc}
*/
public function sub(string $a, string $b) : string
{
return \bcsub($a, $b, 0);
}
/**
* {@inheritdoc}
*/
public function mul(string $a, string $b) : string
{
return \bcmul($a, $b, 0);
}
/**
* {@inheritdoc}
*/
public function divQ(string $a, string $b) : string
{
return \bcdiv($a, $b, 0);
}
/**
* {@inheritdoc}
*/
public function divR(string $a, string $b) : string
{
return \bcmod($a, $b);
}
/**
* {@inheritdoc}
*/
public function divQR(string $a, string $b) : array
{
$q = \bcdiv($a, $b, 0);
$r = \bcmod($a, $b);
return [$q, $r];
}
/**
* {@inheritdoc}
*/
public function pow(string $a, int $e) : string
{
return \bcpow($a, (string) $e, 0);
}
/**
* {@inheritdoc}
*/
public function modPow(string $base, string $exp, string $mod) : string
{
return \bcpowmod($base, $exp, $mod, 0);
}
/**
* {@inheritDoc}
*/
public function sqrt(string $n) : string
{
return \bcsqrt($n, 0);
}
}

View file

@ -1,156 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Internal\Calculator;
use Brick\Math\Internal\Calculator;
/**
* Calculator implementation built around the GMP library.
*
* @internal
*
* @psalm-immutable
*/
class GmpCalculator extends Calculator
{
/**
* {@inheritdoc}
*/
public function add(string $a, string $b) : string
{
return \gmp_strval(\gmp_add($a, $b));
}
/**
* {@inheritdoc}
*/
public function sub(string $a, string $b) : string
{
return \gmp_strval(\gmp_sub($a, $b));
}
/**
* {@inheritdoc}
*/
public function mul(string $a, string $b) : string
{
return \gmp_strval(\gmp_mul($a, $b));
}
/**
* {@inheritdoc}
*/
public function divQ(string $a, string $b) : string
{
return \gmp_strval(\gmp_div_q($a, $b));
}
/**
* {@inheritdoc}
*/
public function divR(string $a, string $b) : string
{
return \gmp_strval(\gmp_div_r($a, $b));
}
/**
* {@inheritdoc}
*/
public function divQR(string $a, string $b) : array
{
[$q, $r] = \gmp_div_qr($a, $b);
return [
\gmp_strval($q),
\gmp_strval($r)
];
}
/**
* {@inheritdoc}
*/
public function pow(string $a, int $e) : string
{
return \gmp_strval(\gmp_pow($a, $e));
}
/**
* {@inheritdoc}
*/
public function modInverse(string $x, string $m) : ?string
{
$result = \gmp_invert($x, $m);
if ($result === false) {
return null;
}
return \gmp_strval($result);
}
/**
* {@inheritdoc}
*/
public function modPow(string $base, string $exp, string $mod) : string
{
return \gmp_strval(\gmp_powm($base, $exp, $mod));
}
/**
* {@inheritdoc}
*/
public function gcd(string $a, string $b) : string
{
return \gmp_strval(\gmp_gcd($a, $b));
}
/**
* {@inheritdoc}
*/
public function fromBase(string $number, int $base) : string
{
return \gmp_strval(\gmp_init($number, $base));
}
/**
* {@inheritdoc}
*/
public function toBase(string $number, int $base) : string
{
return \gmp_strval($number, $base);
}
/**
* {@inheritdoc}
*/
public function and(string $a, string $b) : string
{
return \gmp_strval(\gmp_and($a, $b));
}
/**
* {@inheritdoc}
*/
public function or(string $a, string $b) : string
{
return \gmp_strval(\gmp_or($a, $b));
}
/**
* {@inheritdoc}
*/
public function xor(string $a, string $b) : string
{
return \gmp_strval(\gmp_xor($a, $b));
}
/**
* {@inheritDoc}
*/
public function sqrt(string $n) : string
{
return \gmp_strval(\gmp_sqrt($n));
}
}

View file

@ -1,616 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math\Internal\Calculator;
use Brick\Math\Internal\Calculator;
/**
* Calculator implementation using only native PHP code.
*
* @internal
*
* @psalm-immutable
*/
class NativeCalculator extends Calculator
{
/**
* The max number of digits the platform can natively add, subtract, multiply or divide without overflow.
* For multiplication, this represents the max sum of the lengths of both operands.
*
* For addition, it is assumed that an extra digit can hold a carry (1) without overflowing.
* Example: 32-bit: max number 1,999,999,999 (9 digits + carry)
* 64-bit: max number 1,999,999,999,999,999,999 (18 digits + carry)
*
* @var int
*/
private $maxDigits;
/**
* Class constructor.
*
* @codeCoverageIgnore
*/
public function __construct()
{
switch (PHP_INT_SIZE) {
case 4:
$this->maxDigits = 9;
break;
case 8:
$this->maxDigits = 18;
break;
default:
throw new \RuntimeException('The platform is not 32-bit or 64-bit as expected.');
}
}
/**
* {@inheritdoc}
*/
public function add(string $a, string $b) : string
{
$result = $a + $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0') {
return $b;
}
if ($b === '0') {
return $a;
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
if ($aNeg === $bNeg) {
$result = $this->doAdd($aDig, $bDig);
} else {
$result = $this->doSub($aDig, $bDig);
}
if ($aNeg) {
$result = $this->neg($result);
}
return $result;
}
/**
* {@inheritdoc}
*/
public function sub(string $a, string $b) : string
{
return $this->add($a, $this->neg($b));
}
/**
* {@inheritdoc}
*/
public function mul(string $a, string $b) : string
{
$result = $a * $b;
if (is_int($result)) {
return (string) $result;
}
if ($a === '0' || $b === '0') {
return '0';
}
if ($a === '1') {
return $b;
}
if ($b === '1') {
return $a;
}
if ($a === '-1') {
return $this->neg($b);
}
if ($b === '-1') {
return $this->neg($a);
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
$result = $this->doMul($aDig, $bDig);
if ($aNeg !== $bNeg) {
$result = $this->neg($result);
}
return $result;
}
/**
* {@inheritdoc}
*/
public function divQ(string $a, string $b) : string
{
return $this->divQR($a, $b)[0];
}
/**
* {@inheritdoc}
*/
public function divR(string $a, string $b): string
{
return $this->divQR($a, $b)[1];
}
/**
* {@inheritdoc}
*/
public function divQR(string $a, string $b) : array
{
if ($a === '0') {
return ['0', '0'];
}
if ($a === $b) {
return ['1', '0'];
}
if ($b === '1') {
return [$a, '0'];
}
if ($b === '-1') {
return [$this->neg($a), '0'];
}
$na = $a * 1; // cast to number
if (is_int($na)) {
$nb = $b * 1;
if (is_int($nb)) {
// the only division that may overflow is PHP_INT_MIN / -1,
// which cannot happen here as we've already handled a divisor of -1 above.
$r = $na % $nb;
$q = ($na - $r) / $nb;
assert(is_int($q));
return [
(string) $q,
(string) $r
];
}
}
[$aNeg, $bNeg, $aDig, $bDig] = $this->init($a, $b);
[$q, $r] = $this->doDiv($aDig, $bDig);
if ($aNeg !== $bNeg) {
$q = $this->neg($q);
}
if ($aNeg) {
$r = $this->neg($r);
}
return [$q, $r];
}
/**
* {@inheritdoc}
*/
public function pow(string $a, int $e) : string
{
if ($e === 0) {
return '1';
}
if ($e === 1) {
return $a;
}
$odd = $e % 2;
$e -= $odd;
$aa = $this->mul($a, $a);
$result = $this->pow($aa, $e / 2);
if ($odd === 1) {
$result = $this->mul($result, $a);
}
return $result;
}
/**
* Algorithm from: https://www.geeksforgeeks.org/modular-exponentiation-power-in-modular-arithmetic/
*
* {@inheritdoc}
*/
public function modPow(string $base, string $exp, string $mod) : string
{
// special case: the algorithm below fails with 0 power 0 mod 1 (returns 1 instead of 0)
if ($base === '0' && $exp === '0' && $mod === '1') {
return '0';
}
// special case: the algorithm below fails with power 0 mod 1 (returns 1 instead of 0)
if ($exp === '0' && $mod === '1') {
return '0';
}
$x = $base;
$res = '1';
// numbers are positive, so we can use remainder instead of modulo
$x = $this->divR($x, $mod);
while ($exp !== '0') {
if (in_array($exp[-1], ['1', '3', '5', '7', '9'])) { // odd
$res = $this->divR($this->mul($res, $x), $mod);
}
$exp = $this->divQ($exp, '2');
$x = $this->divR($this->mul($x, $x), $mod);
}
return $res;
}
/**
* Adapted from https://cp-algorithms.com/num_methods/roots_newton.html
*
* {@inheritDoc}
*/
public function sqrt(string $n) : string
{
if ($n === '0') {
return '0';
}
// initial approximation
$x = \str_repeat('9', \intdiv(\strlen($n), 2) ?: 1);
$decreased = false;
for (;;) {
$nx = $this->divQ($this->add($x, $this->divQ($n, $x)), '2');
if ($x === $nx || $this->cmp($nx, $x) > 0 && $decreased) {
break;
}
$decreased = $this->cmp($nx, $x) < 0;
$x = $nx;
}
return $x;
}
/**
* Performs the addition of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doAdd(string $a, string $b) : string
{
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
$i = 0;
}
$blockA = \substr($a, $i, $blockLength);
$blockB = \substr($b, $i, $blockLength);
$sum = (string) ($blockA + $blockB + $carry);
$sumLength = \strlen($sum);
if ($sumLength > $blockLength) {
$sum = \substr($sum, 1);
$carry = 1;
} else {
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$carry = 0;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
if ($carry === 1) {
$result = '1' . $result;
}
return $result;
}
/**
* Performs the subtraction of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doSub(string $a, string $b) : string
{
if ($a === $b) {
return '0';
}
// Ensure that we always subtract to a positive result: biggest minus smallest.
$cmp = $this->doCmp($a, $b);
$invert = ($cmp === -1);
if ($invert) {
$c = $a;
$a = $b;
$b = $c;
}
[$a, $b, $length] = $this->pad($a, $b);
$carry = 0;
$result = '';
$complement = 10 ** $this->maxDigits;
for ($i = $length - $this->maxDigits;; $i -= $this->maxDigits) {
$blockLength = $this->maxDigits;
if ($i < 0) {
$blockLength += $i;
$i = 0;
}
$blockA = \substr($a, $i, $blockLength);
$blockB = \substr($b, $i, $blockLength);
$sum = $blockA - $blockB - $carry;
if ($sum < 0) {
$sum += $complement;
$carry = 1;
} else {
$carry = 0;
}
$sum = (string) $sum;
$sumLength = \strlen($sum);
if ($sumLength < $blockLength) {
$sum = \str_repeat('0', $blockLength - $sumLength) . $sum;
}
$result = $sum . $result;
if ($i === 0) {
break;
}
}
// Carry cannot be 1 when the loop ends, as a > b
assert($carry === 0);
$result = \ltrim($result, '0');
if ($invert) {
$result = $this->neg($result);
}
return $result;
}
/**
* Performs the multiplication of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string
*/
private function doMul(string $a, string $b) : string
{
$x = \strlen($a);
$y = \strlen($b);
$maxDigits = \intdiv($this->maxDigits, 2);
$complement = 10 ** $maxDigits;
$result = '0';
for ($i = $x - $maxDigits;; $i -= $maxDigits) {
$blockALength = $maxDigits;
if ($i < 0) {
$blockALength += $i;
$i = 0;
}
$blockA = (int) \substr($a, $i, $blockALength);
$line = '';
$carry = 0;
for ($j = $y - $maxDigits;; $j -= $maxDigits) {
$blockBLength = $maxDigits;
if ($j < 0) {
$blockBLength += $j;
$j = 0;
}
$blockB = (int) \substr($b, $j, $blockBLength);
$mul = $blockA * $blockB + $carry;
$value = $mul % $complement;
$carry = ($mul - $value) / $complement;
$value = (string) $value;
$value = \str_pad($value, $maxDigits, '0', STR_PAD_LEFT);
$line = $value . $line;
if ($j === 0) {
break;
}
}
if ($carry !== 0) {
$line = $carry . $line;
}
$line = \ltrim($line, '0');
if ($line !== '') {
$line .= \str_repeat('0', $x - $blockALength - $i);
$result = $this->add($result, $line);
}
if ($i === 0) {
break;
}
}
return $result;
}
/**
* Performs the division of two non-signed large integers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return string[] The quotient and remainder.
*/
private function doDiv(string $a, string $b) : array
{
$cmp = $this->doCmp($a, $b);
if ($cmp === -1) {
return ['0', $a];
}
$x = \strlen($a);
$y = \strlen($b);
// we now know that a >= b && x >= y
$q = '0'; // quotient
$r = $a; // remainder
$z = $y; // focus length, always $y or $y+1
for (;;) {
$focus = \substr($a, 0, $z);
$cmp = $this->doCmp($focus, $b);
if ($cmp === -1) {
if ($z === $x) { // remainder < dividend
break;
}
$z++;
}
$zeros = \str_repeat('0', $x - $z);
$q = $this->add($q, '1' . $zeros);
$a = $this->sub($a, $b . $zeros);
$r = $a;
if ($r === '0') { // remainder == 0
break;
}
$x = \strlen($a);
if ($x < $y) { // remainder < dividend
break;
}
$z = $y;
}
return [$q, $r];
}
/**
* Compares two non-signed large numbers.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return int [-1, 0, 1]
*/
private function doCmp(string $a, string $b) : int
{
$x = \strlen($a);
$y = \strlen($b);
$cmp = $x <=> $y;
if ($cmp !== 0) {
return $cmp;
}
return \strcmp($a, $b) <=> 0; // enforce [-1, 0, 1]
}
/**
* Pads the left of one of the given numbers with zeros if necessary to make both numbers the same length.
*
* The numbers must only consist of digits, without leading minus sign.
*
* @param string $a The first operand.
* @param string $b The second operand.
*
* @return array{0: string, 1: string, 2: int}
*/
private function pad(string $a, string $b) : array
{
$x = \strlen($a);
$y = \strlen($b);
if ($x > $y) {
$b = \str_repeat('0', $x - $y) . $b;
return [$a, $b, $x];
}
if ($x < $y) {
$a = \str_repeat('0', $y - $x) . $a;
return [$a, $b, $y];
}
return [$a, $b, $x];
}
}

View file

@ -1,107 +0,0 @@
<?php
declare(strict_types=1);
namespace Brick\Math;
/**
* Specifies a rounding behavior for numerical operations capable of discarding precision.
*
* Each rounding mode indicates how the least significant returned digit of a rounded result
* is to be calculated. If fewer digits are returned than the digits needed to represent the
* exact numerical result, the discarded digits will be referred to as the discarded fraction
* regardless the digits' contribution to the value of the number. In other words, considered
* as a numerical value, the discarded fraction could have an absolute value greater than one.
*/
final class RoundingMode
{
/**
* Private constructor. This class is not instantiable.
*
* @codeCoverageIgnore
*/
private function __construct()
{
}
/**
* Asserts that the requested operation has an exact result, hence no rounding is necessary.
*
* If this rounding mode is specified on an operation that yields a result that
* cannot be represented at the requested scale, a RoundingNecessaryException is thrown.
*/
public const UNNECESSARY = 0;
/**
* Rounds away from zero.
*
* Always increments the digit prior to a nonzero discarded fraction.
* Note that this rounding mode never decreases the magnitude of the calculated value.
*/
public const UP = 1;
/**
* Rounds towards zero.
*
* Never increments the digit prior to a discarded fraction (i.e., truncates).
* Note that this rounding mode never increases the magnitude of the calculated value.
*/
public const DOWN = 2;
/**
* Rounds towards positive infinity.
*
* If the result is positive, behaves as for UP; if negative, behaves as for DOWN.
* Note that this rounding mode never decreases the calculated value.
*/
public const CEILING = 3;
/**
* Rounds towards negative infinity.
*
* If the result is positive, behave as for DOWN; if negative, behave as for UP.
* Note that this rounding mode never increases the calculated value.
*/
public const FLOOR = 4;
/**
* Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round up.
*
* Behaves as for UP if the discarded fraction is >= 0.5; otherwise, behaves as for DOWN.
* Note that this is the rounding mode commonly taught at school.
*/
public const HALF_UP = 5;
/**
* Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round down.
*
* Behaves as for UP if the discarded fraction is > 0.5; otherwise, behaves as for DOWN.
*/
public const HALF_DOWN = 6;
/**
* Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round towards positive infinity.
*
* If the result is positive, behaves as for HALF_UP; if negative, behaves as for HALF_DOWN.
*/
public const HALF_CEILING = 7;
/**
* Rounds towards "nearest neighbor" unless both neighbors are equidistant, in which case round towards negative infinity.
*
* If the result is positive, behaves as for HALF_DOWN; if negative, behaves as for HALF_UP.
*/
public const HALF_FLOOR = 8;
/**
* Rounds towards the "nearest neighbor" unless both neighbors are equidistant, in which case rounds towards the even neighbor.
*
* Behaves as for HALF_UP if the digit to the left of the discarded fraction is odd;
* behaves as for HALF_DOWN if it's even.
*
* Note that this is the rounding mode that statistically minimizes
* cumulative error when applied repeatedly over a sequence of calculations.
* It is sometimes known as "Banker's rounding", and is chiefly used in the USA.
*/
public const HALF_EVEN = 9;
}