166 lines
4.3 KiB
Cython
166 lines
4.3 KiB
Cython
from libcpp cimport bool
|
|
from libcpp cimport string as cppstring
|
|
import numpy as np
|
|
cimport numpy as np
|
|
from cpython cimport PyObject, Py_INCREF
|
|
cimport cython
|
|
|
|
np.import_array()
|
|
|
|
cdef extern from "cosmopower.hpp" namespace "CosmoTool":
|
|
|
|
cdef enum CosmoFunction "CosmoTool::CosmoPower::CosmoFunction":
|
|
POWER_EFSTATHIOU "CosmoTool::CosmoPower::POWER_EFSTATHIOU",
|
|
HU_WIGGLES "CosmoTool::CosmoPower::HU_WIGGLES",
|
|
HU_BARYON "CosmoTool::CosmoPower::HU_BARYON",
|
|
OLD_POWERSPECTRUM,
|
|
POWER_BARDEEN "CosmoTool::CosmoPower::POWER_BARDEEN",
|
|
POWER_SUGIYAMA "CosmoTool::CosmoPower::POWER_SUGIYAMA",
|
|
POWER_BDM,
|
|
POWER_TEST,
|
|
HU_WIGGLES_ORIGINAL "CosmoTool::CosmoPower::HU_WIGGLES_ORIGINAL"
|
|
|
|
cdef cppclass CosmoPower:
|
|
double n
|
|
double K0
|
|
double V_LG_CMB
|
|
|
|
double CMB_VECTOR[3]
|
|
double h
|
|
double SIGMA8
|
|
double OMEGA_B
|
|
double OMEGA_C
|
|
double omega_B
|
|
double omega_C
|
|
double Theta_27
|
|
double OMEGA_0
|
|
double Omega
|
|
double beta
|
|
double OmegaEff
|
|
double Gamma0
|
|
double normPower
|
|
|
|
|
|
CosmoPower()
|
|
void setFunction(CosmoFunction)
|
|
void updateCosmology()
|
|
void updatePhysicalCosmology()
|
|
void normalize(double,double)
|
|
void setNormalization(double)
|
|
double power(double)
|
|
|
|
cdef class CosmologyPower:
|
|
"""CosmologyPower(**cosmo)
|
|
|
|
CosmologyPower manages and compute power spectra computation according to different
|
|
approximation given in the litterature.
|
|
|
|
Keyword arguments:
|
|
omega_B_0 (float): relative baryon density
|
|
omega_M_0 (float): relative matter density
|
|
h (float): Hubble constant relative to 100 km/s/Mpc
|
|
ns (float): power law of the large scale inflation spectrum
|
|
"""
|
|
|
|
cdef CosmoPower power
|
|
|
|
def __init__(self,**cosmo):
|
|
"""Constructor
|
|
|
|
Keyword arguments:
|
|
* omega_B_0
|
|
* omega_M_0
|
|
* h
|
|
* ns
|
|
* T27
|
|
"""
|
|
self.power = CosmoPower()
|
|
self.power.OMEGA_B = cosmo['omega_B_0']
|
|
self.power.OMEGA_C = cosmo['omega_M_0']-cosmo['omega_B_0']
|
|
self.power.h = cosmo['h']
|
|
if 'ns' in cosmo:
|
|
self.power.n = cosmo['ns']
|
|
if 'T27' in cosmo:
|
|
self.power.Theta_27 = cosmo['T27']
|
|
|
|
assert self.power.OMEGA_C > 0
|
|
|
|
self.power.updateCosmology()
|
|
|
|
def setNormalization(self,A):
|
|
"""Set manual normalization for A_S"""
|
|
self.power.setNormalization(A)
|
|
|
|
def normalize(self,s8,k_min=-1,k_max=-1):
|
|
"""normalize(self, sigma8)
|
|
|
|
Compute the normalization of the power spectrum using sigma8.
|
|
|
|
Arguments:
|
|
sigma8 (float): standard deviation of density field smoothed at 8 Mpc/h
|
|
"""
|
|
self.power.SIGMA8 = s8
|
|
self.power.normalize(k_min, k_max)
|
|
|
|
|
|
def setFunction(self,funcname):
|
|
"""setFunction(self, funcname)
|
|
|
|
Choose an approximation to use for the computation of the power spectrum
|
|
|
|
Arguments:
|
|
funcname (str): the name of the approximation. It can be either
|
|
EFSTATHIOU, HU_WIGGLES, HU_BARYON, BARDEEN or SUGIYAMA.
|
|
"""
|
|
cdef CosmoFunction f
|
|
|
|
f = POWER_EFSTATHIOU
|
|
|
|
if funcname=='EFSTATHIOU':
|
|
f = POWER_EFSTATHIOU
|
|
elif funcname=='HU_WIGGLES':
|
|
f = HU_WIGGLES
|
|
elif funcname=='HU_BARYON':
|
|
f = HU_BARYON
|
|
elif funcname=='BARDEEN':
|
|
f = POWER_BARDEEN
|
|
elif funcname=='SUGIYAMA':
|
|
f = POWER_SUGIYAMA
|
|
elif funcname=='HU_WIGGLES_ORIGINAL':
|
|
f = HU_WIGGLES_ORIGINAL
|
|
else:
|
|
raise ValueError("Unknown function name " + funcname)
|
|
|
|
self.power.setFunction(f)
|
|
|
|
cdef double _compute(self, double k):
|
|
k *= self.power.h
|
|
return self.power.power(k) * self.power.h**3
|
|
|
|
def compute(self, k):
|
|
"""compute(self, k)
|
|
|
|
Compute the power spectrum for mode which length k.
|
|
|
|
Arguments:
|
|
k (float): Mode for which to evaluate the power spectrum.
|
|
It can be a scalar or a numpy array.
|
|
The units must be in 'h Mpc^{-1}'.
|
|
|
|
Returns:
|
|
a scalar or a numpy array depending on the type of the k argument
|
|
"""
|
|
|
|
cdef np.ndarray out
|
|
cdef double kval
|
|
cdef tuple i
|
|
|
|
if isinstance(k, np.ndarray):
|
|
out = np.empty(k.shape, dtype=np.float64)
|
|
for i,kval in np.ndenumerate(k):
|
|
out[i] = self._compute(kval)
|
|
return out
|
|
else:
|
|
return self._compute(k)
|
|
|