307 lines
6.6 KiB
C++
307 lines
6.6 KiB
C++
/*+
|
|
This is CosmoTool (./src/eskow.hpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
|
|
|
|
guilhem.lavaux@gmail.com
|
|
|
|
This software is a computer program whose purpose is to provide a toolbox for cosmological
|
|
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
|
|
|
|
This software is governed by the CeCILL license under French law and
|
|
abiding by the rules of distribution of free software. You can use,
|
|
modify and/ or redistribute the software under the terms of the CeCILL
|
|
license as circulated by CEA, CNRS and INRIA at the following URL
|
|
"http://www.cecill.info".
|
|
|
|
As a counterpart to the access to the source code and rights to copy,
|
|
modify and redistribute granted by the license, users are provided only
|
|
with a limited warranty and the software's author, the holder of the
|
|
economic rights, and the successive licensors have only limited
|
|
liability.
|
|
|
|
In this respect, the user's attention is drawn to the risks associated
|
|
with loading, using, modifying and/or developing or reproducing the
|
|
software by the user in light of its specific status of free software,
|
|
that may mean that it is complicated to manipulate, and that also
|
|
therefore means that it is reserved for developers and experienced
|
|
professionals having in-depth computer knowledge. Users are therefore
|
|
encouraged to load and test the software's suitability as regards their
|
|
requirements in conditions enabling the security of their systems and/or
|
|
data to be ensured and, more generally, to use and operate it in the
|
|
same conditions as regards security.
|
|
|
|
The fact that you are presently reading this means that you have had
|
|
knowledge of the CeCILL license and that you accept its terms.
|
|
+*/
|
|
|
|
#ifndef __ESKOW_CHOLESKY_HPP
|
|
#define __ESKOW_CHOLESKY_HPP
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
#include "mach.hpp"
|
|
|
|
/* Implementation of Schnabel & Eskow, 1999, Vol. 9, No. 4, pp. 1135-148, SIAM J. OPTIM. */
|
|
|
|
template<typename T, typename A>
|
|
class CholeskyEskow
|
|
{
|
|
private:
|
|
static const bool verbose_eskow = true;
|
|
T tau, tau_bar, mu;
|
|
|
|
void print_matrix(A& m, int N)
|
|
{
|
|
using std::cout;
|
|
using std::endl;
|
|
using std::setprecision;
|
|
|
|
if (verbose_eskow)
|
|
{
|
|
|
|
for (int i = 0; i < N; i++)
|
|
{
|
|
for (int j = 0; j < N; j++)
|
|
{
|
|
cout.width(6);
|
|
cout << setprecision(5) << m(i,j) << " ";
|
|
}
|
|
cout << endl;
|
|
}
|
|
cout << endl;
|
|
}
|
|
}
|
|
|
|
T max_diag(A& m, int j, int N)
|
|
{
|
|
T maxval = std::abs(m(j,j));
|
|
|
|
for (int k = j+1; k < N; k++)
|
|
{
|
|
maxval = std::max(maxval, std::abs(m(k,k)));
|
|
}
|
|
return maxval;
|
|
}
|
|
|
|
void minmax_diag(A& m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max)
|
|
{
|
|
i_min = i_max = j;
|
|
minval = maxval = m(j,j);
|
|
|
|
for (int k = j+1; k < N; k++)
|
|
{
|
|
maxval = std::max(maxval, m(k,k));
|
|
minval = std::min(minval, m(k,k));
|
|
}
|
|
|
|
for (int k = j; k < N; k++)
|
|
{
|
|
if (m(k,k) == minval && i_min < 0)
|
|
i_min = k;
|
|
if (m(k,k) == maxval && i_max < 0)
|
|
i_max = k;
|
|
}
|
|
}
|
|
|
|
void swap_rows(A& m, int N, int i0, int i1)
|
|
{
|
|
for (int r = 0; r < N; r++)
|
|
std::swap(m(r,i0), m(r,i1));
|
|
}
|
|
|
|
void swap_cols(A& m, int N, int i0, int i1)
|
|
{
|
|
for (int c = 0; c < N; c++)
|
|
std::swap(m(i0,c), m(i1,c));
|
|
}
|
|
|
|
T square(T x)
|
|
{
|
|
return x*x;
|
|
}
|
|
|
|
T min_row(A& m, int j, int N)
|
|
{
|
|
T a = 1/m(j,j);
|
|
T v = m(j+1,j+1) - square(m(j+1,j))*a;
|
|
|
|
for (int i = j+2; i < N; i++)
|
|
{
|
|
v = std::min(v, m(i, i) - square(m(i,j))*a);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
int g_max(const std::vector<T>& g, int j, int N)
|
|
{
|
|
T a = g[j];
|
|
int k = j;
|
|
|
|
for (int i = j+1; i < N; i++)
|
|
{
|
|
if (a < g[i])
|
|
{
|
|
a = g[i];
|
|
k = i;
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
public:
|
|
CholeskyEskow()
|
|
{
|
|
tau = std::pow(mach_epsilon<T>(), 1./3);
|
|
tau_bar = std::pow(mach_epsilon<T>(), 2./3);
|
|
mu=0.1;
|
|
}
|
|
|
|
void cholesky(A& m, int N, T& norm_E)
|
|
{
|
|
bool phaseone = true;
|
|
T gamma = max_diag(m, 0, N);
|
|
int j;
|
|
|
|
norm_E = 0;
|
|
|
|
for (j = 0; j < N && phaseone; j++)
|
|
{
|
|
T minval, maxval;
|
|
int i_min, i_max;
|
|
|
|
print_matrix(m, N);
|
|
|
|
minmax_diag(m, j, N, minval, maxval, i_min, i_max);
|
|
if (maxval < tau_bar*gamma || minval < -mu*maxval)
|
|
{
|
|
phaseone = false;
|
|
break;
|
|
}
|
|
|
|
if (i_max != j)
|
|
{
|
|
std::cout << "Have to swap i=" << i_max << " and j=" << j << std::endl;
|
|
swap_cols(m, N, i_max, j);
|
|
swap_rows(m, N, i_max, j);
|
|
|
|
}
|
|
|
|
if (min_row(m, j, N) < -mu*gamma)
|
|
{
|
|
phaseone = false;
|
|
break;
|
|
}
|
|
|
|
T L_jj = std::sqrt(m(j,j));
|
|
|
|
m(j,j) = L_jj;
|
|
for (int i = j+1; i < N; i++)
|
|
{
|
|
m(i,j) /= L_jj;
|
|
for (int k = j+1; k <= i; k++)
|
|
m(i,k) -= m(i,j)*m(k,j);
|
|
}
|
|
}
|
|
|
|
|
|
if (!phaseone && j == N-1)
|
|
{
|
|
T A_nn = m(N-1,N-1);
|
|
T delta = -A_nn + std::max(tau*(-A_nn)/(1-tau), tau_bar*gamma);
|
|
|
|
m(N-1,N-1) = std::sqrt(m(N-1,N-1) + delta);
|
|
}
|
|
|
|
|
|
|
|
if (!phaseone && j < (N-1))
|
|
{
|
|
std::cout << "Phase two ! (j=" << j << ")" << std::endl;
|
|
|
|
int k = j-1;
|
|
std::vector<T> g(N);
|
|
|
|
for (int i = k+1; i < N; i++)
|
|
{
|
|
g[i] = m(i,i);
|
|
for (int j = k+1; j < i; j++)
|
|
g[i] -= std::abs(m(i,j));
|
|
for (int j = i+1; j < N; j++)
|
|
g[i] -= std::abs(m(j,i));
|
|
}
|
|
|
|
T delta, delta_prev = 0;
|
|
|
|
for (int j = k+1; j < N-2; j++)
|
|
{
|
|
int i = g_max(g, j, N);
|
|
T norm_j;
|
|
|
|
print_matrix(m, N);
|
|
|
|
if (i != j)
|
|
{
|
|
swap_cols(m, N, i, j);
|
|
swap_rows(m, N, i, j);
|
|
}
|
|
|
|
|
|
for (int i = j+1; j < N; j++)
|
|
{
|
|
norm_j += std::abs(m(i,j));
|
|
}
|
|
|
|
delta = std::max(delta_prev, std::max((T)0, -m(j,j) + std::max(norm_j,tau_bar*gamma)));
|
|
if (delta > 0)
|
|
{
|
|
m(j,j) += delta;
|
|
delta_prev = delta;
|
|
}
|
|
|
|
if (m(j,j) != norm_j)
|
|
{
|
|
T temp = 1 - norm_j/m(j,j);
|
|
|
|
for (int i = j+1; j < N; j++)
|
|
{
|
|
g[i] += std::abs(m(i,j))*temp;
|
|
}
|
|
}
|
|
|
|
// Now we do the classic cholesky iteration
|
|
T L_jj = std::sqrt(m(j,j));
|
|
|
|
m(j,j) = L_jj;
|
|
for (int i = j+1; i < N; i++)
|
|
{
|
|
m(i,j) /= L_jj;
|
|
for (int k = j+1; k <= i; k++)
|
|
m(i,k) -= m(i,j)*m(k,j);
|
|
}
|
|
}
|
|
|
|
// The final 2x2 submatrix is special
|
|
T A00 = m(N-2, N-2), A01 = m(N-2, N-1), A11 = m(N-1,N-1);
|
|
T sq_DELTA = std::sqrt(square(A00-A11) + square(A01));
|
|
T lambda_hi = 0.5*((A00+A11) + sq_DELTA);
|
|
T lambda_lo = 0.5*((A00+A11) - sq_DELTA);
|
|
|
|
delta = std::max(std::max((T)0, -lambda_lo + std::max(tau*sq_DELTA/(1-tau), tau_bar*gamma)),delta_prev);
|
|
if (delta > 0)
|
|
{
|
|
m(N-1,N-1) += delta;
|
|
m(N,N) += delta;
|
|
delta_prev = delta;
|
|
}
|
|
m(N-2,N-2) = A00 = std::sqrt(A00);
|
|
m(N-1,N-2) = (A01 /= A00);
|
|
m(N-1,N-1) = std::sqrt(A11-A01*A01);
|
|
norm_E = delta_prev;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
#endif
|