222 lines
6.3 KiB
C++
222 lines
6.3 KiB
C++
/*+
|
|
This is CosmoTool (./src/fourier/details/euclidian_spectrum_1d.hpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
|
|
|
|
guilhem.lavaux@gmail.com
|
|
|
|
This software is a computer program whose purpose is to provide a toolbox for cosmological
|
|
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
|
|
|
|
This software is governed by the CeCILL license under French law and
|
|
abiding by the rules of distribution of free software. You can use,
|
|
modify and/ or redistribute the software under the terms of the CeCILL
|
|
license as circulated by CEA, CNRS and INRIA at the following URL
|
|
"http://www.cecill.info".
|
|
|
|
As a counterpart to the access to the source code and rights to copy,
|
|
modify and redistribute granted by the license, users are provided only
|
|
with a limited warranty and the software's author, the holder of the
|
|
economic rights, and the successive licensors have only limited
|
|
liability.
|
|
|
|
In this respect, the user's attention is drawn to the risks associated
|
|
with loading, using, modifying and/or developing or reproducing the
|
|
software by the user in light of its specific status of free software,
|
|
that may mean that it is complicated to manipulate, and that also
|
|
therefore means that it is reserved for developers and experienced
|
|
professionals having in-depth computer knowledge. Users are therefore
|
|
encouraged to load and test the software's suitability as regards their
|
|
requirements in conditions enabling the security of their systems and/or
|
|
data to be ensured and, more generally, to use and operate it in the
|
|
same conditions as regards security.
|
|
|
|
The fact that you are presently reading this means that you have had
|
|
knowledge of the CeCILL license and that you accept its terms.
|
|
+*/
|
|
|
|
#ifndef __DETAILS_EUCLIDIAN_SPECTRUM_1D
|
|
#define __DETAILS_EUCLIDIAN_SPECTRUM_1D
|
|
|
|
#include <iostream>
|
|
#include <boost/function.hpp>
|
|
|
|
|
|
namespace CosmoTool
|
|
{
|
|
template<typename T>
|
|
class EuclidianOperator
|
|
{
|
|
public:
|
|
typedef boost::function1<T, T> Function;
|
|
|
|
Function base, op;
|
|
T operator()(T k) {
|
|
return op(base(k));
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class EuclidianSpectrum_1D: public SpectrumFunction<T>
|
|
{
|
|
public:
|
|
typedef boost::function1<T, T> Function;
|
|
protected:
|
|
Function f;
|
|
|
|
static T msqrt(T a) { return std::sqrt(a); }
|
|
public:
|
|
typedef typename SpectrumFunction<T>::FourierMapType FourierMapType;
|
|
typedef typename SpectrumFunction<T>::SpectrumFunctionPtr SpectrumFunctionPtr;
|
|
typedef boost::shared_ptr<FourierMapType> ptr_map;
|
|
|
|
EuclidianSpectrum_1D(Function P)
|
|
: f(P)
|
|
{
|
|
}
|
|
|
|
void newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const;
|
|
|
|
SpectrumFunctionPtr copy() const {
|
|
return SpectrumFunctionPtr(new EuclidianSpectrum_1D(f));
|
|
}
|
|
|
|
void sqrt() {
|
|
EuclidianOperator<T> o;
|
|
o.base = f;
|
|
o.op = &EuclidianSpectrum_1D<T>::msqrt;
|
|
f = (Function(o));
|
|
}
|
|
|
|
void mul(FourierMapType& m) const;
|
|
void mul_sqrt(FourierMapType& m) const;
|
|
void mul_inv(FourierMapType& m) const;
|
|
void mul_inv_sqrt(FourierMapType& m) const;
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
void EuclidianSpectrum_1D<T>::newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const
|
|
{
|
|
typedef EuclidianFourierMapComplex<T> MapT;
|
|
typedef typename EuclidianSpectrum_1D<T>::ptr_map ptr_map;
|
|
typedef typename MapT::DimArray DimArray;
|
|
|
|
MapT& rand_map = dynamic_cast<MapT&>(out_map);
|
|
|
|
std::complex<T> *d = rand_map.data();
|
|
long idx;
|
|
const DimArray& dims = rand_map.getDims();
|
|
const std::vector<double>& delta_k = rand_map.get_delta_k();
|
|
long plane_size;
|
|
bool alleven = rand_map.allDimensionsEven();
|
|
double V = 1;
|
|
|
|
for (int p = 0; p < delta_k.size(); p++)
|
|
V *= (2*M_PI/delta_k[p]);
|
|
|
|
for (long p = 1; p < rand_map.size(); p++)
|
|
{
|
|
double A_k = std::sqrt(0.5*V*f(rand_map.get_K_p(p)));
|
|
d[p] = std::complex<T>(gsl_ran_gaussian(rng, A_k),
|
|
gsl_ran_gaussian(rng, A_k));
|
|
}
|
|
// Generate the mean value
|
|
d[0] = std::complex<T>(gsl_ran_gaussian(rng, std::sqrt(V*f(0))), 0);
|
|
|
|
if (!rand_map.firstDimensionEven())
|
|
return;
|
|
|
|
// Correct the Nyquist plane
|
|
idx = dims[0]-1; // Stick to the last element of the first dimension
|
|
d[idx] = std::complex<T>(d[idx].real() + d[idx].imag(), 0);
|
|
// 1D is special case
|
|
if (dims.size() == 1)
|
|
return;
|
|
|
|
plane_size = 1;
|
|
for (int q = 1; q < dims.size(); q++)
|
|
{
|
|
plane_size *= dims[q];
|
|
}
|
|
|
|
for (long p = 1; p < plane_size/2+1; p++)
|
|
{
|
|
long q = (p+1)*dims[0]-1;
|
|
long q2 = (plane_size-p+1)*dims[0]-1;
|
|
assert(q < plane_size*dims[0]);
|
|
assert(q2 < plane_size*dims[0]);
|
|
d[q] = conj(d[q2]);
|
|
}
|
|
|
|
for (long p = 1; p < plane_size/2+1; p++)
|
|
{
|
|
long q = (p)*dims[0];
|
|
long q2 = (plane_size-p)*dims[0];
|
|
d[q] = conj(d[q2]);
|
|
}
|
|
|
|
if (alleven)
|
|
{
|
|
long q = 0;
|
|
for (int i = dims.size()-1; i >= 1; i--)
|
|
q = dims[i]*q + dims[i]/2;
|
|
q += dims[0]-1;
|
|
d[q] = std::complex<T>(d[q].real()+d[q].imag(),0);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void EuclidianSpectrum_1D<T>::mul(FourierMapType& m) const
|
|
{
|
|
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
|
std::complex<T> *d = m.data();
|
|
|
|
for (long p = 0; p < m_c.size(); p++)
|
|
d[p] *= f(m_c.get_K_p(p));
|
|
}
|
|
|
|
template<typename T>
|
|
void EuclidianSpectrum_1D<T>::mul_sqrt(FourierMapType& m) const
|
|
{
|
|
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
|
std::complex<T> *d = m.data();
|
|
|
|
for (long p = 0; p < m_c.size(); p++)
|
|
d[p] *= std::sqrt(f(m_c.get_K_p(p)));
|
|
}
|
|
|
|
template<typename T>
|
|
void EuclidianSpectrum_1D<T>::mul_inv(FourierMapType& m) const
|
|
{
|
|
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
|
std::complex<T> *d = m.data();
|
|
|
|
for (long p = 0; p < m_c.size(); p++)
|
|
{
|
|
T A = f(m_c.get_K_p(p));
|
|
if (A==0)
|
|
d[p] = 0;
|
|
else
|
|
d[p] /= A;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void EuclidianSpectrum_1D<T>::mul_inv_sqrt(FourierMapType& m) const
|
|
{
|
|
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
|
std::complex<T> *d = m.data();
|
|
|
|
for (long p = 0; p < m_c.size(); p++)
|
|
{
|
|
T A = std::sqrt(f(m_c.get_K_p(p)));
|
|
if (A == 0)
|
|
d[p] = 0;
|
|
else
|
|
d[p] /= A;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
#endif
|