309 lines
7.8 KiB
C++
309 lines
7.8 KiB
C++
#include <cstring>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <iostream>
|
|
#include <cassert>
|
|
|
|
namespace CosmoTool {
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
class CellCompare
|
|
{
|
|
public:
|
|
CellCompare(int k)
|
|
{
|
|
rank = k;
|
|
}
|
|
|
|
bool operator()(const KDLeafCell<N,ValType,CType> *a, const KDLeafCell<N,ValType,CType> *b) const
|
|
{
|
|
return (a->coord[rank] < b->coord[rank]);
|
|
}
|
|
protected:
|
|
int rank;
|
|
};
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
KDLeafTree<N,ValType,CType>::~KDLeafTree()
|
|
{
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
KDLeafTree<N,ValType,CType>::KDLeafTree(Cell *cells, uint32_t Ncells)
|
|
{
|
|
numNodes = Ncells*3;
|
|
numCells = Ncells;
|
|
nodes = new Node[numNodes];
|
|
|
|
sortingHelper = new Cell *[Ncells];
|
|
for (uint32_t i = 0; i < Ncells; i++)
|
|
sortingHelper[i] = &cells[i];
|
|
|
|
optimize();
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
void KDLeafTree<N,ValType,CType>::optimize()
|
|
{
|
|
coords absoluteMin, absoluteMax;
|
|
|
|
std::cout << "Optimizing the tree..." << std::endl;
|
|
uint32_t activeCells = gatherActiveCells(sortingHelper, numCells);
|
|
std::cout << " number of active cells = " << activeCells << std::endl;
|
|
|
|
lastNode = 0;
|
|
for (int i = 0; i < N; i++)
|
|
{
|
|
absoluteMin[i] = std::numeric_limits<typeof (absoluteMin[0])>::max();
|
|
absoluteMax[i] = -std::numeric_limits<typeof (absoluteMax[0])>::max();
|
|
}
|
|
// Find min and max corner
|
|
for (uint32_t i = 0; i < activeCells; i++)
|
|
{
|
|
KDLeafCell<N,ValType,CType> *cell = sortingHelper[i];
|
|
|
|
for (int k = 0; k < N; k++) {
|
|
if (cell->coord[k] < absoluteMin[k])
|
|
absoluteMin[k] = cell->coord[k];
|
|
if (cell->coord[k] > absoluteMax[k])
|
|
absoluteMax[k] = cell->coord[k];
|
|
}
|
|
}
|
|
|
|
std::cout << " rebuilding the tree..." << std::endl;
|
|
root = buildTree(sortingHelper, activeCells, 0, absoluteMin, absoluteMax);
|
|
std::cout << " done." << std::endl;
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
uint32_t gatherActiveCells(KDLeafCell<N,ValType,CType> **cells,
|
|
uint32_t Ncells)
|
|
{
|
|
uint32_t swapId = Ncells-1;
|
|
uint32_t i = 0;
|
|
|
|
while (!cells[swapId]->active && swapId > 0)
|
|
swapId--;
|
|
|
|
while (i < swapId)
|
|
{
|
|
if (!cells[i]->active)
|
|
{
|
|
std::swap(cells[i], cells[swapId]);
|
|
while (!cells[swapId]->active && swapId > i)
|
|
{
|
|
swapId--;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
return swapId+1;
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
KDLeafTreeNode<N,ValType,CType> *
|
|
KDLeafTree<N,ValType,CType>::buildTree(Cell **cell0,
|
|
uint32_t Ncells,
|
|
uint32_t depth,
|
|
coords minBound,
|
|
coords maxBound)
|
|
{
|
|
if (Ncells == 0)
|
|
return 0;
|
|
|
|
int axis = depth % N;
|
|
assert(lastNode != numNodes);
|
|
Node *node = &nodes[lastNode++];
|
|
uint32_t mid = Ncells/2;
|
|
coords tmpBound;
|
|
|
|
// Isolate the environment
|
|
{
|
|
CellCompare<N,ValType,CType> compare(axis);
|
|
std::sort(cell0, cell0+Ncells, compare);
|
|
}
|
|
|
|
node->leaf = false;
|
|
memcpy(&node->minBound[0], &minBound[0], sizeof(coords));
|
|
memcpy(&node->maxBound[0], &maxBound[0], sizeof(coords));
|
|
|
|
if (Ncells == 1)
|
|
{
|
|
node->leaf = true;
|
|
node->value = *cell0;
|
|
|
|
#ifdef __KDLEAF_TREE_NUMNODES
|
|
node->numNodes = 1;
|
|
#endif
|
|
return node;
|
|
}
|
|
|
|
memcpy(tmpBound, maxBound, sizeof(coords));
|
|
tmpBound[axis] = (*(cell0+mid))->coord[axis];
|
|
depth++;
|
|
node->children[0] = buildTree(cell0, mid, depth, minBound, tmpBound);
|
|
|
|
memcpy(tmpBound, minBound, sizeof(coords));
|
|
tmpBound[axis] = (*(cell0+mid))->coord[axis];
|
|
node->children[1] = buildTree(cell0+mid, Ncells-mid, depth,
|
|
tmpBound, maxBound);
|
|
|
|
#ifdef __KDLEAF_TREE_NUMNODES
|
|
node->numNodes = (node->children[0] != 0) ? node->children[0]->numNodes : 0;
|
|
node->numNodes += (node->children[1] != 0) ? node->children[1]->numNodes : 0;
|
|
#endif
|
|
|
|
return node;
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
uint32_t KDLeafTree<N,ValType,CType>::countActives() const
|
|
{
|
|
uint32_t numActive = 0;
|
|
for (uint32_t i = 0; i < lastNode; i++)
|
|
{
|
|
if (nodes[i].value->active)
|
|
numActive++;
|
|
}
|
|
return numActive;
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
typename KDLeafDef<N,CType>::CoordType
|
|
KDLeafTree<N,ValType,CType>::computeDistance(const Cell *cell, const coords& x) const
|
|
{
|
|
CoordType d2 = 0;
|
|
|
|
for (int i = 0; i < N; i++)
|
|
{
|
|
CoordType delta = cell->coord[i] - x[i];
|
|
d2 += delta*delta;
|
|
}
|
|
return d2;
|
|
}
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
double KDLeafTree<N,ValType,CType>::countInRange(CType sLo, CType sHigh, Node *root1, Node *root2) const
|
|
{
|
|
double result = recursiveCountInRange((root1 == 0) ? root : root1,
|
|
(root2 == 0) ? root : root2,
|
|
sLo*sLo, sHigh*sHigh);
|
|
return result;
|
|
}
|
|
|
|
|
|
template<int N, typename ValType, typename CType>
|
|
double KDLeafTree<N,ValType,CType>::recursiveCountInRange(Node *na, Node *nb,
|
|
CType sLo, CType sHi) const
|
|
{
|
|
assert(nb != 0);
|
|
if (na == 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint32_t numNa = getNumberInNode(na);
|
|
uint32_t numNb = getNumberInNode(nb);
|
|
double Cleft, Cright;
|
|
CType minDist, maxDist;
|
|
|
|
if (numNa == 1 && numNb == 1)
|
|
{
|
|
assert(na->leaf && nb->leaf);
|
|
CType ab_dist = computeDistance(na->value, nb->value->coord);
|
|
if (ab_dist >= sLo && ab_dist < sHi)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
assert(numNa > 1 || numNb > 1);
|
|
|
|
bool overlapping_a = true, overlapping_b = true;
|
|
for (int k = 0; k < N; k++)
|
|
{
|
|
bool min_a_in_B =
|
|
((na->minBound[k] >= nb->minBound[k] &&
|
|
na->minBound[k] <= nb->maxBound[k]));
|
|
bool max_a_in_B =
|
|
((na->maxBound[k] >= nb->minBound[k] &&
|
|
na->maxBound[k] <= nb->maxBound[k]));
|
|
bool min_b_in_A =
|
|
((nb->minBound[k] >= na->minBound[k] &&
|
|
nb->minBound[k] <= na->maxBound[k]));
|
|
bool max_b_in_A =
|
|
((nb->maxBound[k] >= na->minBound[k] &&
|
|
nb->maxBound[k] <= na->maxBound[k]));
|
|
|
|
if (!min_a_in_B && !max_a_in_B)
|
|
overlapping_a = false;
|
|
if (!min_b_in_A && !max_b_in_A)
|
|
overlapping_b = false;
|
|
}
|
|
|
|
if (overlapping_a || overlapping_b)
|
|
{
|
|
minDist = 0;
|
|
maxDist = 0;
|
|
for (int k = 0; k < N; k++)
|
|
{
|
|
CType delta = max(nb->maxBound[k]-na->minBound[k],na->maxBound[k]-nb->minBound[k]);
|
|
maxDist += delta*delta;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
minDist = maxDist = 0;
|
|
for (int k = 0; k < N; k++)
|
|
{
|
|
CType delta2;
|
|
delta2 = max(nb->maxBound[k]-na->minBound[k],
|
|
na->maxBound[k]-nb->minBound[k]);
|
|
maxDist += delta2*delta2;
|
|
}
|
|
// mins and maxs
|
|
CType minmax[N][2];
|
|
for (int k = 0; k < N; k++)
|
|
{
|
|
if (na->minBound[k] < nb->minBound[k])
|
|
{
|
|
minmax[k][1] = na->maxBound[k];
|
|
minmax[k][0] = nb->minBound[k];
|
|
}
|
|
else
|
|
{
|
|
minmax[k][1] = nb->maxBound[k];
|
|
minmax[k][0] = na->minBound[k];
|
|
}
|
|
}
|
|
for (int k = 0; k < N; k++)
|
|
{
|
|
CType delta = max(minmax[k][0]-minmax[k][1], 0.);
|
|
minDist += delta*delta;
|
|
}
|
|
}
|
|
|
|
if (minDist >= sHi)
|
|
return 0;
|
|
if (maxDist < sLo)
|
|
return 0;
|
|
|
|
if (sLo <= minDist && maxDist < sHi)
|
|
return ((double)numNa)*numNb;
|
|
|
|
if (numNa < numNb)
|
|
{
|
|
assert(!nb->leaf);
|
|
Cleft = recursiveCountInRange(nb->children[0], na, sLo, sHi);
|
|
Cright = recursiveCountInRange(nb->children[1], na, sLo, sHi);
|
|
}
|
|
else
|
|
{
|
|
assert(!na->leaf);
|
|
Cleft = recursiveCountInRange(na->children[0], nb, sLo, sHi);
|
|
Cright = recursiveCountInRange(na->children[1], nb, sLo, sHi);
|
|
}
|
|
return Cleft+Cright;
|
|
}
|
|
|
|
};
|