cosmotool/external/sharp/libsharp/sharp_vecsupport.h
2012-11-10 09:01:12 -05:00

175 lines
5.2 KiB
C

/*
* This file is part of libsharp.
*
* libsharp is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* libsharp is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with libsharp; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* libsharp is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/* \file sharp_vecsupport.h
* Convenience functions for vector arithmetics
*
* Copyright (C) 2012 Max-Planck-Society
* Author: Martin Reinecke
*/
#ifndef SHARP_VECSUPPORT_H
#define SHARP_VECSUPPORT_H
#include <math.h>
#include "sharp_vecutil.h"
typedef double Ts;
#if (VLEN==1)
typedef double Tv;
#define vadd(a,b) ((a)+(b))
#define vaddeq(a,b) ((a)+=(b))
#define vsub(a,b) ((a)-(b))
#define vsubeq(a,b) ((a)-=(b))
#define vmul(a,b) ((a)*(b))
#define vmuleq(a,b) ((a)*=(b))
#define vfmaeq(a,b,c) ((a)+=(b)*(c))
#define vfmseq(a,b,c) ((a)-=(b)*(c))
#define vfmaaeq(a,b,c,d,e) ((a)+=(b)*(c)+(d)*(e))
#define vfmaseq(a,b,c,d,e) ((a)+=(b)*(c)-(d)*(e))
#define vneg(a) (-(a))
#define vload(a) (a)
#define vabs(a) fabs(a)
#define vsqrt(a) sqrt(a)
#define vlt(a,b) (((a)<(b))?1.:0.)
#define vgt(a,b) (((a)>(b))?1.:0.)
#define vge(a,b) (((a)>=(b))?1.:0.)
#define vne(a,b) (((a)!=(b))?1.:0.)
#define vand(a,b) ((((a)*(b))!=0.)?1.:0.)
#define vor(a,b) ((((a)+(b))!=0.)?1.:0.)
static inline Tv vmin (Tv a, Tv b) { return (a<b) ? a : b; }
static inline Tv vmax (Tv a, Tv b) { return (a>b) ? a : b; }
#define vanyTrue(a) ((a)!=0.)
#define vallTrue(a) ((a)!=0.)
#define vblend(m,a,b) (((m)!=0.) ? (a) : (b))
#define vzero 0.
#define vone 1.
#endif
#if (VLEN==2)
#include <emmintrin.h>
#if defined (__SSE3__)
#include <pmmintrin.h>
#endif
#if defined (__SSE4_1__)
#include <smmintrin.h>
#endif
typedef __m128d Tv;
#define vadd(a,b) _mm_add_pd(a,b)
#define vaddeq(a,b) a=_mm_add_pd(a,b)
#define vsub(a,b) _mm_sub_pd(a,b)
#define vsubeq(a,b) a=_mm_sub_pd(a,b)
#define vmul(a,b) _mm_mul_pd(a,b)
#define vmuleq(a,b) a=_mm_mul_pd(a,b)
#define vfmaeq(a,b,c) a=_mm_add_pd(a,_mm_mul_pd(b,c))
#define vfmseq(a,b,c) a=_mm_sub_pd(a,_mm_mul_pd(b,c))
#define vfmaaeq(a,b,c,d,e) \
a=_mm_add_pd(a,_mm_add_pd(_mm_mul_pd(b,c),_mm_mul_pd(d,e)))
#define vfmaseq(a,b,c,d,e) \
a=_mm_add_pd(a,_mm_sub_pd(_mm_mul_pd(b,c),_mm_mul_pd(d,e)))
#define vneg(a) _mm_xor_pd(_mm_set1_pd(-0.),a)
#define vload(a) _mm_set1_pd(a)
#define vabs(a) _mm_andnot_pd(_mm_set1_pd(-0.),a)
#define vsqrt(a) _mm_sqrt_pd(a)
#define vlt(a,b) _mm_cmplt_pd(a,b)
#define vgt(a,b) _mm_cmpgt_pd(a,b)
#define vge(a,b) _mm_cmpge_pd(a,b)
#define vne(a,b) _mm_cmpneq_pd(a,b)
#define vand(a,b) _mm_and_pd(a,b)
#define vor(a,b) _mm_or_pd(a,b)
#define vmin(a,b) _mm_min_pd(a,b)
#define vmax(a,b) _mm_max_pd(a,b);
#define vanyTrue(a) (_mm_movemask_pd(a)!=0)
#define vallTrue(a) (_mm_movemask_pd(a)==3)
#if defined(__SSE4_1__)
#define vblend(m,a,b) _mm_blendv_pd(b,a,m)
#else
static inline Tv vblend(Tv m, Tv a, Tv b)
{ return _mm_or_pd(_mm_and_pd(a,m),_mm_andnot_pd(m,b)); }
#endif
#define vzero _mm_setzero_pd()
#define vone _mm_set1_pd(1.)
#endif
#if (VLEN==4)
#include <immintrin.h>
#ifdef __FMA4__
#include <x86intrin.h>
#endif
typedef __m256d Tv;
#define vadd(a,b) _mm256_add_pd(a,b)
#define vaddeq(a,b) a=_mm256_add_pd(a,b)
#define vsub(a,b) _mm256_sub_pd(a,b)
#define vsubeq(a,b) a=_mm256_sub_pd(a,b)
#define vmul(a,b) _mm256_mul_pd(a,b)
#define vmuleq(a,b) a=_mm256_mul_pd(a,b)
#ifdef __FMA4__
#define vfmaeq(a,b,c) a=_mm256_macc_pd(b,c,a)
#define vfmseq(a,b,c) a=_mm256_nmacc_pd(b,c,a)
#define vfmaaeq(a,b,c,d,e) a=_mm256_macc_pd(d,e,_mm256_macc_pd(b,c,a))
#define vfmaseq(a,b,c,d,e) a=_mm256_nmacc_pd(d,e,_mm256_macc_pd(b,c,a))
#else
#define vfmaeq(a,b,c) a=_mm256_add_pd(a,_mm256_mul_pd(b,c))
#define vfmseq(a,b,c) a=_mm256_sub_pd(a,_mm256_mul_pd(b,c))
#define vfmaaeq(a,b,c,d,e) \
a=_mm256_add_pd(a,_mm256_add_pd(_mm256_mul_pd(b,c),_mm256_mul_pd(d,e)))
#define vfmaseq(a,b,c,d,e) \
a=_mm256_add_pd(a,_mm256_sub_pd(_mm256_mul_pd(b,c),_mm256_mul_pd(d,e)))
#endif
#define vneg(a) _mm256_xor_pd(_mm256_set1_pd(-0.),a)
#define vload(a) _mm256_set1_pd(a)
#define vabs(a) _mm256_andnot_pd(_mm256_set1_pd(-0.),a)
#define vsqrt(a) _mm256_sqrt_pd(a)
#define vlt(a,b) _mm256_cmp_pd(a,b,_CMP_LT_OQ)
#define vgt(a,b) _mm256_cmp_pd(a,b,_CMP_GT_OQ)
#define vge(a,b) _mm256_cmp_pd(a,b,_CMP_GE_OQ)
#define vne(a,b) _mm256_cmp_pd(a,b,_CMP_NEQ_OQ)
#define vand(a,b) _mm256_and_pd(a,b)
#define vor(a,b) _mm256_or_pd(a,b)
#define vmin(a,b) _mm256_min_pd(a,b)
#define vmax(a,b) _mm256_max_pd(a,b)
#define vanyTrue(a) (_mm256_movemask_pd(a)!=0)
#define vallTrue(a) (_mm256_movemask_pd(a)==15)
#define vblend(m,a,b) _mm256_blendv_pd(b,a,m)
#define vzero _mm256_setzero_pd()
#define vone _mm256_set1_pd(1.)
#endif
#endif