730 lines
18 KiB
C++
730 lines
18 KiB
C++
/*+
|
|
This is CosmoTool (./src/powerSpectrum.cpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
|
|
|
|
guilhem.lavaux@gmail.com
|
|
|
|
This software is a computer program whose purpose is to provide a toolbox for cosmological
|
|
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
|
|
|
|
This software is governed by the CeCILL license under French law and
|
|
abiding by the rules of distribution of free software. You can use,
|
|
modify and/ or redistribute the software under the terms of the CeCILL
|
|
license as circulated by CEA, CNRS and INRIA at the following URL
|
|
"http://www.cecill.info".
|
|
|
|
As a counterpart to the access to the source code and rights to copy,
|
|
modify and redistribute granted by the license, users are provided only
|
|
with a limited warranty and the software's author, the holder of the
|
|
economic rights, and the successive licensors have only limited
|
|
liability.
|
|
|
|
In this respect, the user's attention is drawn to the risks associated
|
|
with loading, using, modifying and/or developing or reproducing the
|
|
software by the user in light of its specific status of free software,
|
|
that may mean that it is complicated to manipulate, and that also
|
|
therefore means that it is reserved for developers and experienced
|
|
professionals having in-depth computer knowledge. Users are therefore
|
|
encouraged to load and test the software's suitability as regards their
|
|
requirements in conditions enabling the security of their systems and/or
|
|
data to be ensured and, more generally, to use and operate it in the
|
|
same conditions as regards security.
|
|
|
|
The fact that you are presently reading this means that you have had
|
|
knowledge of the CeCILL license and that you accept its terms.
|
|
+*/
|
|
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <fstream>
|
|
#include <gsl/gsl_integration.h>
|
|
#include "powerSpectrum.hpp"
|
|
|
|
using namespace std;
|
|
|
|
#define USE_GSL
|
|
#define TOLERANCE 1e-6
|
|
#define NUM_ITERATION 8000
|
|
|
|
#define POWER_EFSTATHIOU 1
|
|
#define HU_WIGGLES 2
|
|
#define HU_BARYON 3
|
|
#define OLD_POWERSPECTRUM 4
|
|
#define POWER_BARDEEN 5
|
|
#define POWER_SUGIYAMA 6
|
|
#define POWER_BDM 7
|
|
#define POWER_TEST 8
|
|
|
|
#define POWER_SPECTRUM POWER_EFSTATHIOU
|
|
#define SAMPLE_WIGGLES 9
|
|
|
|
namespace Cosmology {
|
|
|
|
double n = 1.0;
|
|
double K0 = 1;
|
|
double V0 = 627;
|
|
|
|
double CMB_VECTOR[3] = {
|
|
56.759,
|
|
-540.02,
|
|
313.50
|
|
};
|
|
|
|
|
|
// WMAP5
|
|
double h = 0.719;
|
|
double SIGMA8 = 0.77;
|
|
double OMEGA_B = 0.043969;
|
|
double OMEGA_C = 0.21259;
|
|
|
|
|
|
// WMAP5-modification
|
|
//double h = 0.719;
|
|
//double SIGMA8 = 0.77;
|
|
//double OMEGA_B = 0;
|
|
//double OMEGA_C = 0.21259+0.043969;
|
|
|
|
// LCDM STRAUSS ?
|
|
//double h = 0.67;
|
|
//double SIGMA8 = 0.67;
|
|
//double OMEGA_B = 0;
|
|
//double OMEGA_C = 0.30;
|
|
|
|
// SCDM STRAUSS
|
|
//double h = 0.5;
|
|
//double SIGMA8= 1.05;
|
|
//double OMEGA_B = 0;
|
|
//double OMEGA_C = 1;
|
|
|
|
// Sugiyama test
|
|
//double h = 0.5;
|
|
//double SIGMA8= 0.5;//1.05;
|
|
//double OMEGA_B = 0.0125*4;
|
|
//double OMEGA_C = 0.1-OMEGA_B;
|
|
|
|
// HU TEST
|
|
//double h = 0.5;
|
|
//double SIGMA8 = 0.5;
|
|
//double OMEGA_B = 0.09;
|
|
//double OMEGA_C = 0.21;
|
|
|
|
// HDM STRAUSS
|
|
//double h = 0.5;
|
|
//double SIGMA8 = 0.86;
|
|
//double OMEGA_B = 0;
|
|
//double OMEGA_C = 1;
|
|
|
|
// FOR "BEST FIT"
|
|
//double h = 0.82;
|
|
//double SIGMA8 = 0.76;
|
|
//double OMEGA_B = 0.043969;
|
|
//double OMEGA_C = 0.15259;
|
|
|
|
|
|
// FOR JUSZKIEWICZ CHECKING (CDM) ! WARNING ! He smoothes
|
|
// with a gaussian filter the density field, i.e. one has
|
|
// to multiply P(k) by exp(-k^2 R^2) with R the radius
|
|
// of the filter. Dammit !
|
|
//double h = 0.5;
|
|
//double SIGMA8=1/2.5;
|
|
//double OMEGA_B=0.;
|
|
//double OMEGA_C=1;
|
|
//#define JUSZKIEWICZ_PATCH
|
|
//#define RJUSZ 6.0
|
|
|
|
// (BDM)
|
|
//double h = 0.5;
|
|
//double SIGMA8=1;
|
|
//double OMEGA_B=0.0;
|
|
//double OMEGA_C=0.4;
|
|
|
|
|
|
// FOR HU CHECKING
|
|
//double h = 0.5;
|
|
//double SIGMA8= 1;
|
|
//double OMEGA_B=0.09;
|
|
//double OMEGA_C=0.21;
|
|
|
|
|
|
double OMEGA_0 = OMEGA_B+OMEGA_C;
|
|
double Omega = OMEGA_0;
|
|
double Theta_27 = 2.728 / 2.7;
|
|
double beta = pow(OMEGA_0, 5./9);
|
|
double OmegaEff = OMEGA_0 * h * h;
|
|
double Gamma0 = OMEGA_0 * h * h;
|
|
|
|
|
|
/*
|
|
* This is \hat{tophat}
|
|
*/
|
|
double tophatFilter(double u)
|
|
{
|
|
if (u != 0)
|
|
return 3 / (u*u*u) * (sin(u) - u * cos(u));
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This is \tilde{w}
|
|
*/
|
|
double externalFilter(double u)
|
|
{
|
|
if (u != 0)
|
|
return 1 - sin(u)/u;
|
|
return 0.;
|
|
}
|
|
|
|
double powC(double q, double alpha_c)
|
|
{
|
|
return 14.2 / alpha_c + 386 / (1 + 69.9 * pow(q, 1.08));
|
|
}
|
|
|
|
double T_tilde_0(double q, double alpha_c, double beta_c)
|
|
{
|
|
double a = log(M_E + 1.8 * beta_c * q);
|
|
return a / ( a + powC(q, alpha_c) * q * q);
|
|
}
|
|
|
|
double j_0(double x)
|
|
{
|
|
if (x == 0)
|
|
return 1.0;
|
|
return sin(x)/x;
|
|
}
|
|
|
|
double powG(double y)
|
|
{
|
|
double a = sqrt(1 + y);
|
|
|
|
return y * (-6 * a + (2 + 3 * y) *log((a + 1)/(a - 1)));
|
|
}
|
|
|
|
/*
|
|
* This function returns the power spectrum evaluated at k (in Mpc, not in Mpc/h).
|
|
*/
|
|
double powerSpectrum(double k, double normPower)
|
|
{
|
|
#if POWER_SPECTRUM == SAMPLE_WIGGLES
|
|
// BAO wiggle parameterization for reconstruction
|
|
// Babic et al. 2022, https://arxiv.org/abs/2203.06177
|
|
|
|
// No-wiggle transfer function
|
|
|
|
double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75)));
|
|
double alpha_Gamma = 1 - 0.328 * log(431 * OmegaEff) * OMEGA_B / OMEGA_0 + 0.38 * log(22.3 * OmegaEff) * pow(OMEGA_B / OMEGA_0, 2);
|
|
double GammaEff = OMEGA_0 * h * (alpha_Gamma + (1 - alpha_Gamma)/(1 + pow(0.43 * k * s, 4)));
|
|
double q = k/(h*GammaEff) * pow(Theta_27, 2);
|
|
double L_0 = log(2 * M_E + 1.8 * q);
|
|
double C_0 = 14.2 + 731 / (1 + 62.5 * q);
|
|
double T0 = L_0 / (L_0 + C_0 * q * q);
|
|
|
|
// Wiggle parameterization
|
|
|
|
double A = 0;
|
|
double r_s = 10;
|
|
double k_D = 2 * M_PI / 100;
|
|
|
|
double param = 1 + A * sin(k * r_s) * exp(- k / k_D);
|
|
|
|
return normPower * pow(k, n) * T0 * T0 * param;
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == POWER_EFSTATHIOU
|
|
double a = 6.4/Gamma0;
|
|
double b = 3/Gamma0;
|
|
double c = 1.7/Gamma0;
|
|
double nu = 1.13;
|
|
|
|
double f = (a*k) + pow(b*k,1.5) + pow(c*k,2);
|
|
|
|
// EFSTATHIOU ET AL. (1992)
|
|
return normPower * pow(k,n) * pow(1+pow(f,nu),(-2/nu));
|
|
#endif
|
|
|
|
// EISENSTEIN ET HU (1998)
|
|
// FULL POWER SPECTRUM WITH BARYONS AND WIGGLES
|
|
|
|
#if POWER_SPECTRUM == HU_WIGGLES
|
|
// EISENSTEIN ET HU (1998)
|
|
// FULL POWER SPECTRUM WITH BARYONS AND WIGGLES
|
|
|
|
double k_silk = 1.6 * pow(OMEGA_B * h * h, 0.52) * pow(OmegaEff, 0.73) * (1 + pow(10.4 * OmegaEff, -0.95));
|
|
double z_eq = 2.50e4 * OmegaEff * pow(Theta_27, -4);
|
|
double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75)));
|
|
double f = 1 / (1 + pow(k * s / 5.4, 4));
|
|
double k_eq = 7.46e-2 * OmegaEff * pow(Theta_27, -2);
|
|
double a1 = pow(46.9 * OmegaEff, 0.670) * (1 + pow(32.1 * OmegaEff, -0.532));
|
|
double a2 = pow(12.0 * OmegaEff, 0.424) * (1 + pow(45.0 * OmegaEff, -0.582));
|
|
double alpha_c = pow(a1, -OMEGA_B/ OMEGA_0) * pow(a2, -pow(OMEGA_B / OMEGA_0, 3));
|
|
|
|
double q = k / (13.41 * k_eq);
|
|
double b1_betac = 0.944 * 1/(1 + pow(458 * OmegaEff, -0.708));
|
|
double b2_betac = pow(0.395 * OmegaEff, -0.0266);
|
|
double beta_c = 1/ ( 1 + b1_betac * (pow(OMEGA_C / OMEGA_0, b2_betac) - 1) );
|
|
double T_c = f * T_tilde_0(q, 1, beta_c) + (1 - f) * T_tilde_0(q, alpha_c, beta_c);
|
|
|
|
double b1_zd = 0.313 * pow(OmegaEff, -0.419) * (1 + 0.607 * pow(OmegaEff, 0.674));
|
|
double b2_zd = 0.238 * pow(OmegaEff, 0.223);
|
|
double z_d = 1291 * pow(OmegaEff, 0.251) / (1 + 0.659 * pow(OmegaEff, 0.828)) * (1 + b1_zd * pow(OmegaEff, b2_zd));
|
|
double R_d = 31.5 * OMEGA_B * h * h * pow(Theta_27, -4) * 1e3 / z_d;
|
|
|
|
double alpha_b = 2.07 * k_eq * s * pow(1 + R_d, -0.75) * powG((1 + z_eq)/(1 + z_d));
|
|
double beta_b = 0.5 + OMEGA_B / OMEGA_0 + (3 - 2 * OMEGA_B / OMEGA_0) * sqrt(pow(17.2 * OmegaEff, 2) + 1);
|
|
double beta_node = 8.41 * pow(OmegaEff, 0.435);
|
|
double s_tilde = s * pow(1 + pow(beta_node / (k * s), 3), -1./3);
|
|
|
|
double T_b = (T_tilde_0(q, 1, 1) / (1 + pow(k * s / 5.2, 2)) + alpha_b / (1 + pow(beta_b / (k * s), 3)) * exp(-pow(k/k_silk, 1.4))) * j_0(k * s_tilde);
|
|
|
|
double T_k = OMEGA_B/OMEGA_0 * T_b + OMEGA_C/OMEGA_0 * T_c;
|
|
|
|
return normPower * pow(k,n) * T_k * T_k;
|
|
#endif
|
|
|
|
// EISENSTEIN ET AL. (2008), SHAPED POWER SPECTRUM WITH BARYON, WITHOUT WIGGLES
|
|
#if POWER_SPECTRUM == HU_BARYON
|
|
double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75)));
|
|
double alpha_Gamma = 1 - 0.328 * log(431 * OmegaEff) * OMEGA_B / OMEGA_0 + 0.38 * log(22.3 * OmegaEff) * pow(OMEGA_B / OMEGA_0, 2);
|
|
double GammaEff = OMEGA_0 * h * (alpha_Gamma + (1 - alpha_Gamma)/(1 + pow(0.43 * k * s, 4)));
|
|
double q = k/(h*GammaEff) * pow(Theta_27, 2);
|
|
double L_0 = log(2 * M_E + 1.8 * q);
|
|
double C_0 = 14.2 + 731 / (1 + 62.5 * q);
|
|
double T0 = L_0 / (L_0 + C_0 * q * q);
|
|
|
|
return normPower * pow(k,n) * T0 * T0;
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == OLD_POWERSPECTRUM
|
|
// OLD FUNCTION:
|
|
static const double l = 1/(Omega * h*h);
|
|
static const double alpha = 1.7 * l, beta = 9.0 * pow(l, 1.5), gamma = l*l;
|
|
return normPower * pow(k,n) * pow(1 + alpha * k + beta * pow(k,1.5) + gamma *k*k,-2);
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == POWER_SUGIYAMA
|
|
double q = k * Theta_27*Theta_27 / (OmegaEff * exp(-OMEGA_B - sqrt(h/0.5)*OMEGA_B/OMEGA_0));
|
|
double L0 = log(2*M_E + 1.8 * q);
|
|
double C0 = 14.2 + 731 / (1 + 62.5 * q);
|
|
double T_k = L0 / (L0 + C0 * q*q);
|
|
|
|
// double poly = 1 + 3.89 * q + pow(16.1*q,2) + pow(5.46*q,3) + pow(6.71*q,4);
|
|
// double T_k = log(1+2.34*q)/(2.34*q) * pow(poly,-0.25);
|
|
|
|
return normPower * pow(k,n) * T_k * T_k;
|
|
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == POWER_BARDEEN
|
|
double q = k / (OmegaEff);
|
|
|
|
double poly = 1 + 3.89 * q + pow(16.1*q,2) + pow(5.46*q,3) + pow(6.71*q,4);
|
|
double T_k = log(1+2.34*q)/(2.34*q) * pow(poly,-0.25);
|
|
|
|
return normPower * pow(k,n) * T_k * T_k;
|
|
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == POWER_BDM
|
|
|
|
k /= h*h;
|
|
double alpha1 = 190;
|
|
double Gmu = 4.6;
|
|
double alpha2 = 11.5;
|
|
double alpha3 = 11;
|
|
double alpha4 = 12.55;
|
|
double alpha5 = 0.0004;
|
|
return normPower*k*alpha1*alpha1*Gmu*Gmu/(1+(alpha2*k)+pow(alpha3*k,2)+pow(alpha4*k,3))*pow(1+pow(alpha5/k,2), -2);
|
|
#endif
|
|
|
|
#if POWER_SPECTRUM == POWER_TEST
|
|
return 1/(1+k*k);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* This function computes the normalization of the power spectrum. It requests
|
|
* a sigma8 (density fluctuations within 8 Mpc/h)
|
|
*/
|
|
double gslPowSpecNorm(double k, void *params)
|
|
{
|
|
double f = tophatFilter(k*8.0/h);
|
|
return powerSpectrum(k, 1.0)*k*k*f*f;
|
|
}
|
|
|
|
double computePowSpecNorm(double sigma8)
|
|
{
|
|
int Nsteps = 30000;
|
|
double normVal = 0;
|
|
|
|
#ifndef USE_GSL
|
|
for (int i = 1; i <= Nsteps; i++)
|
|
{
|
|
double t = i * 1.0/(Nsteps+1);
|
|
// Change of variable !
|
|
double k = (1-t)/t * K0;
|
|
|
|
// The filter
|
|
double filter_val = tophatFilter(k*8.0/h);
|
|
// The powerspectrum
|
|
double powVal = powerSpectrum(k, 1.0);
|
|
// Multiply by the tophat filter
|
|
powVal *= filter_val*filter_val;
|
|
|
|
powVal *= k*k;
|
|
|
|
// Account for change of variable
|
|
powVal /= (t*t);
|
|
|
|
// Integrate !
|
|
normVal += powVal;
|
|
}
|
|
|
|
normVal /= 2*M_PI*M_PI;
|
|
|
|
// The dt element
|
|
normVal *= 1.0/(Nsteps+1) * K0;
|
|
#else
|
|
double abserr;
|
|
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
|
gsl_function f;
|
|
|
|
f.function = gslPowSpecNorm;
|
|
f.params = 0;
|
|
|
|
gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &normVal, &abserr);
|
|
|
|
gsl_integration_workspace_free(w);
|
|
|
|
normVal /= (2*M_PI*M_PI);
|
|
#endif
|
|
|
|
return sigma8*sigma8/normVal;
|
|
}
|
|
|
|
/*
|
|
* This function computes the variance of the Local Group velocity components
|
|
* for a survey which depth is topHatRad1 (in Mpc/h). This variance should
|
|
* be multiplied by (H \beta)^2 to be equal to a velocity^2.
|
|
*/
|
|
double gslVariance(double k, void *params)
|
|
{
|
|
double R1 = *(double *)params;
|
|
double f = externalFilter(k * R1 / h);
|
|
|
|
double a = f*f;
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h)));
|
|
#endif
|
|
a *= powerSpectrum(k, 1.0);
|
|
|
|
return a;
|
|
}
|
|
|
|
double computeVariance(double powNorm, double topHatRad1)
|
|
{
|
|
int Nsteps = 100000;
|
|
double varVal = 0;
|
|
|
|
#ifndef USE_GSL
|
|
|
|
for (int i = 1; i <= Nsteps; i++)
|
|
{
|
|
double t = i * 1.0/(Nsteps+1);
|
|
// Change of variable !
|
|
double k = (1-t)/t * K0;
|
|
double powVal = powerSpectrum(k, powNorm);
|
|
|
|
double filter1Val = externalFilter(k*topHatRad1/h);
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
powVal *= exp(-k*k*(RJUSZ*RJUSZ/(h*h)));
|
|
#endif
|
|
powVal *= filter1Val*filter1Val;
|
|
|
|
powVal /= (t*t);
|
|
|
|
varVal += powVal;
|
|
}
|
|
|
|
varVal *= 1.0/(Nsteps) * K0;
|
|
varVal *= 1.0/(6*M_PI*M_PI);
|
|
|
|
#else
|
|
|
|
double abserr;
|
|
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
|
gsl_function f;
|
|
|
|
f.function = gslVariance;
|
|
f.params = &topHatRad1;
|
|
|
|
gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr);
|
|
|
|
gsl_integration_workspace_free(w);
|
|
|
|
varVal *= powNorm/(6*M_PI*M_PI);
|
|
|
|
#endif
|
|
|
|
return varVal;
|
|
}
|
|
|
|
/*
|
|
* This function computes the same quantity as computeVariance but
|
|
* for a survey infinitely deep.
|
|
*/
|
|
double gslVarianceZero(double k, void *params)
|
|
{
|
|
double a = 1.0;
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h)));
|
|
#endif
|
|
a *= powerSpectrum(k, 1.0);
|
|
|
|
return a;
|
|
}
|
|
|
|
double computeVarianceZero(double powNorm)
|
|
{
|
|
int Nsteps = 100000;
|
|
double varVal = 0;
|
|
|
|
#ifndef USE_GSL
|
|
|
|
for (int i = 1; i <= Nsteps; i++)
|
|
{
|
|
double t = i * 1.0/(Nsteps+1);
|
|
// Change of variable !
|
|
double k = (1-t)/t * K0;
|
|
double powVal = powerSpectrum(k, powNorm);
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
powVal *= exp(-k*k*(RJUSZ*RJUSZ/h*h));
|
|
#endif
|
|
|
|
powVal /= (t*t);
|
|
|
|
varVal += powVal;
|
|
}
|
|
|
|
varVal *= 1.0/(Nsteps+1) * K0;
|
|
varVal *= 1.0/(6*M_PI*M_PI);
|
|
|
|
#else
|
|
|
|
double abserr;
|
|
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
|
gsl_function f;
|
|
|
|
f.function = gslVarianceZero;
|
|
f.params = 0;
|
|
|
|
gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr);
|
|
|
|
gsl_integration_workspace_free(w);
|
|
|
|
varVal *= powNorm/(6*M_PI*M_PI);
|
|
#endif
|
|
|
|
return varVal;
|
|
}
|
|
|
|
/*
|
|
* This function computes the correlation between the infinitely deep
|
|
* velocity of the Local Group and the one estimated from a survey
|
|
* which depth is topHatRad1.
|
|
* This corresponds to \gamma.
|
|
* This quantity must be multiplied by H \beta to be equal to a velocity^2.
|
|
*/
|
|
double gslCorrel(double k, void *params)
|
|
{
|
|
double R1 = ((double *)params)[0];
|
|
double a = externalFilter(k * R1 / h);// * externalFilter(k * R2 / h);
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h)));
|
|
#endif
|
|
a *= powerSpectrum(k, 1.0);
|
|
|
|
return a;
|
|
}
|
|
|
|
double gslCorrelBis(double t, void *params)
|
|
{
|
|
double k = (1-t)/t;
|
|
double v = gslCorrel(k, params);
|
|
|
|
return v/(t*t);
|
|
}
|
|
|
|
double gslCorrel2(double k, void *params)
|
|
{
|
|
double R1 = ((double *)params)[0];
|
|
double R2 = ((double *)params)[1];
|
|
double a = externalFilter(k * R1 / h) * externalFilter(k * R2 / h);
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h)));
|
|
#endif
|
|
a *= powerSpectrum(k, 1.0) ;
|
|
|
|
return a;
|
|
}
|
|
|
|
double gslCorrel2bis(double t, void *params)
|
|
{
|
|
double k = (1-t)/t;
|
|
double v = gslCorrel2(k, params);
|
|
|
|
return v/(t*t);
|
|
}
|
|
|
|
|
|
double computeCorrel(double powNorm, double topHatRad1)
|
|
{
|
|
int Nsteps = 100000;
|
|
double varVal = 0;
|
|
|
|
#ifndef USE_GSL
|
|
|
|
for (int i = 1; i <= Nsteps; i++)
|
|
{
|
|
double t = i * 1.0/(Nsteps+1);
|
|
// Change of variable !
|
|
double k = (1-t)/t * K0;
|
|
double powVal = powerSpectrum(k, powNorm);
|
|
|
|
double filter1Val = externalFilter(k*topHatRad1/h);
|
|
|
|
#ifdef JUSZKIEWICZ_PATCH
|
|
powVal*=exp(-k*k*(RJUSZ*RJUSZ/h*h));
|
|
#endif
|
|
|
|
powVal *= filter1Val;
|
|
|
|
powVal /= (t*t);
|
|
|
|
varVal += powVal;
|
|
}
|
|
|
|
varVal *= 1.0/(Nsteps) * K0;
|
|
varVal *= 1.0/(6*M_PI*M_PI);
|
|
#else
|
|
|
|
double abserr;
|
|
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
|
gsl_function f;
|
|
|
|
f.params = &topHatRad1;
|
|
|
|
#if 1
|
|
f.function = gslCorrelBis;
|
|
gsl_integration_qag (&f, 0, 1, 0, TOLERANCE, NUM_ITERATION, GSL_INTEG_GAUSS61, w, &varVal, &abserr);
|
|
#else
|
|
f.function = gslCorrel;
|
|
gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr);
|
|
#endif
|
|
|
|
gsl_integration_workspace_free(w);
|
|
|
|
varVal *= powNorm/(6*M_PI*M_PI);
|
|
|
|
#endif
|
|
return varVal;
|
|
}
|
|
|
|
/*
|
|
* This function computes the correlation between the infinitely deep
|
|
* velocity of the Local Group and the one estimated from a survey
|
|
* which depth is topHatRad1.
|
|
* This corresponds to \gamma.
|
|
* This quantity must be multiplied by H \beta to be equal to a velocity^2.
|
|
*/
|
|
double computeCorrel2(double powNorm, double topHatRad1, double topHatRad2)
|
|
{
|
|
int Nsteps = 100000;
|
|
double varVal = 0;
|
|
#ifndef USE_GSL
|
|
|
|
for (int i = 1; i <= Nsteps; i++)
|
|
{
|
|
double t = i * 1.0/(Nsteps+1);
|
|
// Change of variable !
|
|
double k = (1-t)/t * K0;
|
|
double powVal = powerSpectrum(k, powNorm);
|
|
|
|
double filter1Val = externalFilter(k*topHatRad1/h);
|
|
double filter2Val = externalFilter(k*topHatRad2/h);
|
|
|
|
powVal *= filter1Val * filter2Val;
|
|
|
|
powVal /= (t*t);
|
|
|
|
varVal += powVal;
|
|
}
|
|
|
|
varVal *= 1.0/(Nsteps) * K0;
|
|
varVal *= 1.0/(6*M_PI*M_PI);
|
|
|
|
#else
|
|
|
|
double abserr;
|
|
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
|
gsl_function f;
|
|
double rads[] = {topHatRad1, topHatRad2 };
|
|
|
|
f.params = rads;
|
|
|
|
#if 1
|
|
f.function = gslCorrel2bis;
|
|
gsl_integration_qag (&f, 0, 1, 0, TOLERANCE, NUM_ITERATION, GSL_INTEG_GAUSS61, w, &varVal, &abserr);
|
|
#else
|
|
f.function = gslCorrel2;
|
|
gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr);
|
|
#endif
|
|
|
|
gsl_integration_workspace_free(w);
|
|
|
|
varVal *= powNorm/(6*M_PI*M_PI);
|
|
|
|
#endif
|
|
|
|
return varVal;
|
|
}
|
|
|
|
|
|
void updateCosmology()
|
|
{
|
|
OMEGA_0 = OMEGA_B+OMEGA_C;
|
|
Omega = OMEGA_0;
|
|
Theta_27 = 2.728 / 2.7;
|
|
beta = pow(OMEGA_0, 5./9);
|
|
OmegaEff = OMEGA_0 * h * h;
|
|
Gamma0 = OMEGA_0 * h * h;
|
|
|
|
#if 0
|
|
cout << "Cosmology is :" << endl
|
|
<< " O0=" << OMEGA_0 << " Theta=" << Theta_27 << " beta=" << beta << " h=" << h << " G0=" << Gamma0 << endl
|
|
<< " OmegaB=" << OMEGA_B << " Omega_C=" << OMEGA_C << endl;
|
|
#endif
|
|
}
|
|
|
|
double vvCorrection(double P_deltadelta, double k)
|
|
{
|
|
static const double alpha0 = -12480.5, alpha1 = 1.824, alpha2 = 2165.87, alpha3=1.796;
|
|
if (k > 0.3)
|
|
return 0;
|
|
double r =(alpha0*sqrt(P_deltadelta) + alpha1*P_deltadelta*P_deltadelta)/(alpha2 + alpha3*P_deltadelta);
|
|
assert(P_deltadelta > 0);
|
|
|
|
if (r < 0)
|
|
return 0;
|
|
return r;
|
|
}
|
|
|
|
};
|