cosmotool/python_sample/icgen/cosmogrowth.py
2014-06-01 18:07:44 +02:00

103 lines
2.9 KiB
Python

import weakref
import numpy as np
import cosmolopy as cpy
class CosmoGrowth(object):
def __init__(self, **cosmo):
self.cosmo = cosmo
def D(self, a):
return cpy.perturbation.fgrowth(1/a-1, self.cosmo['omega_M_0'], unnormed=True)
def compute_E(self, a):
om = self.cosmo['omega_M_0']
ol = self.cosmo['omega_lambda_0']
ok = self.cosmo['omega_k_0']
E = np.sqrt(om/a**3 + ol + ok/a**2)
H2 = -3*om/a**4 - 2*ok/a**3
Eprime = 0.5*H2/E
return E,Eprime
def Ddot(self, a):
E,Eprime = self.compute_E(a)
D = self.D(a)
Ddot_D = Eprime/E + 2.5 * self.cosmo['omega_M_0']/(a**3*E**2*D)
Ddot_D *= a
return Ddot_D
def compute_velmul(self, a):
E,_ = self.compute_E(a)
velmul = self.Ddot(a)
velmul *= 100 * a * E
return velmul
class LagrangianPerturbation(object):
def __init__(self,density,L, fourier=False):
self.L = L
self.N = density.shape[0]
self.dhat = np.fft.rfftn(density)*(L/self.N)**3 if not fourier else density
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
self.cache = weakref.WeakValueDictionary()
def _gradient(self, phi, direction):
return np.fft.irfftn(self._kdir(direction)*1j*phi)*(self.N/self.L)**3
def lpt1(self, direction=0):
k2 = self._get_k2()
k2[0,0,0] = 1
return self._gradient(-self.dhat/k2, direction)
def new_shape(self,direction, q=3, half=False):
N0 = (self.N/2+1) if half else self.N
return ((1,)*direction) + (N0,) + ((1,)*(q-1-direction))
def _kdir(self, direction, q=3):
if direction != q-1:
return self.ik.reshape(self.new_shape(direction, q=q))
else:
return self.ik[:self.N/2+1].reshape(self.new_shape(direction, q=q, half=True))
def _get_k2(self, q=3):
if 'k2' in self.cache:
return self.cache['k2']
k2 = self._kdir(0, q=q)**2
for d in xrange(1,q):
k2 = k2 + self._kdir(d, q=q)**2
self.cache['k2'] = k2
return k2
def lpt2(self, direction=0):
k2 = self._get_k2()
k2[0,0,0] = 1
if 'lpt2_potential' not in self.cache:
div_phi2 = np.zeros((N,N,N), dtype=np.float64)
for j in xrange(3):
q = np.fft.irfftn( build_dir(ik, j)**2*self.dhat / k2 )
for i in xrange(j+1, 3):
div_phi2 += q * np.fft.irfftn( build_dir(ik, i)**2*self.dhat / k2 )
div_phi2 -= (np.fft.irfftn( build_dir(ik, j)*build_dir(ik, i)*self.dhat / k2 ))**2
div_phi2 *= (self.N/self.L)**3
phi2_hat = np.fft.rfftn(div_phi2) * ((L/N)**3) / k2
self.cache['lpt2_potential'] = phi2_hat
del div_phi2
else:
phi2_hat = self.cache['lpt2_potential']
return self._gradient(phi2_hat, direction)