266 lines
5.5 KiB
Python
266 lines
5.5 KiB
Python
###
|
|
### BORG code is from J. Jasche
|
|
###
|
|
import io
|
|
import numpy as np
|
|
from numpy import *
|
|
import os.path
|
|
import array
|
|
import glob
|
|
|
|
class BorgVolume(object):
|
|
|
|
def __init__(self, density, ranges):
|
|
self.density = density
|
|
self.ranges = ranges
|
|
|
|
def build_filelist(fdir):
|
|
#builds list of all borg density fields which may be distributed over several directories
|
|
|
|
fname_0=glob.glob(fdir[0]+'initial_density_*')
|
|
fname_1=glob.glob(fdir[0]+'final_density_*')
|
|
|
|
fdir=fdir[1:] #eliminate first element
|
|
|
|
for fd in fdir:
|
|
fname_0=fname_0+glob.glob(fd+'initial_density_*')
|
|
fname_1=fname_1+glob.glob(fd+'final_density_*')
|
|
|
|
return fname_0, fname_1
|
|
|
|
def read_borg_vol(BORGFILE):
|
|
""" Reading routine for BORG data
|
|
"""
|
|
|
|
openfile=open(BORGFILE,'rb')
|
|
|
|
period=0
|
|
N0=0
|
|
N1=0
|
|
N2=0
|
|
|
|
xmin=0
|
|
xmax=0
|
|
|
|
ymin=0
|
|
ymax=0
|
|
|
|
zmin=0
|
|
zmax=0
|
|
nlines=0
|
|
|
|
while True:
|
|
line=openfile.readline()
|
|
s=line.rstrip('\n')
|
|
r=s.rsplit(' ')
|
|
|
|
if size(r)==5 :
|
|
if r[0] =="define":
|
|
if r[1]=="Lattice" :
|
|
N0=int(r[2])
|
|
N1=int(r[3])
|
|
N2=int(r[4])
|
|
|
|
if size(r)==11 :
|
|
if r[4] =="BoundingBox":
|
|
xmin=float(r[5])
|
|
xmax=float(r[6])
|
|
ymin=float(r[7])
|
|
ymax=float(r[8])
|
|
zmin=float(r[9])
|
|
zmax=float(r[10].rstrip(','))
|
|
|
|
if r[0]=='@1': break
|
|
|
|
ranges=[]
|
|
ranges.append(xmin)
|
|
ranges.append(xmax)
|
|
ranges.append(ymin)
|
|
ranges.append(ymax)
|
|
ranges.append(zmin)
|
|
ranges.append(zmax)
|
|
|
|
#now read data
|
|
data=np.fromfile(openfile, '>f4')
|
|
data=data.reshape(N2,N0,N1)
|
|
return BorgVolume(data,ranges)
|
|
|
|
def read_spec( fname ):
|
|
""" Reading routine for ARES spectrum samples
|
|
"""
|
|
x,y=np.loadtxt( fname ,usecols=(0,1),unpack=True)
|
|
|
|
return x , y
|
|
|
|
|
|
def read_bias_nmean( fname ):
|
|
""" Reading routine for ARES bias data
|
|
"""
|
|
x,b0,b1,nmean=np.loadtxt( fname ,usecols=(0,1,2,3),unpack=True)
|
|
|
|
return x , b0, b1, nmean
|
|
|
|
def read_nmean( fname ):
|
|
""" Reading routine for BORG bias data
|
|
"""
|
|
x,nmean=np.loadtxt( fname ,usecols=(0,1),unpack=True)
|
|
|
|
return x, nmean
|
|
|
|
def get_grid_values(xx,data, ranges):
|
|
""" return values at grid positions
|
|
"""
|
|
xmin=ranges[0]
|
|
xmax=ranges[1]
|
|
|
|
ymin=ranges[2]
|
|
ymax=ranges[3]
|
|
|
|
zmin=ranges[4]
|
|
zmax=ranges[5]
|
|
|
|
Lx= xmax-xmin
|
|
Ly= ymax-ymin
|
|
Lz= zmax-zmin
|
|
|
|
Nx=shape(data)[0]
|
|
Ny=shape(data)[1]
|
|
Nz=shape(data)[2]
|
|
|
|
dx=Lx/float(Nx)
|
|
dy=Ly/float(Ny)
|
|
dz=Lz/float(Nz)
|
|
|
|
idx=(xx[:,0]-xmin)/dx
|
|
idy=(xx[:,1]-ymin)/dz
|
|
idz=(xx[:,2]-zmin)/dy
|
|
|
|
idx=idx.astype(int)
|
|
idy=idy.astype(int)
|
|
idz=idz.astype(int)
|
|
|
|
idflag=np.where( (idx>-1)*(idx<Nx)*(idy>-1)*(idy<Ny)*(idz>-1)*(idz<Nz) )
|
|
|
|
flag=[False]*len(xx)
|
|
vals=[-999.]*len(xx)
|
|
|
|
flag=np.array(flag)
|
|
vals=np.array(vals)
|
|
flag[idflag]=True
|
|
vals[idflag]=data[idx[idflag],idy[idflag],idz[idflag]]
|
|
|
|
return vals,flag
|
|
|
|
def get_mean_density(fdir, smin, step):
|
|
""" estimate ensemble mean
|
|
"""
|
|
import progressbar as pb
|
|
|
|
print('-'*60)
|
|
print('Get 3D ensemble mean density field')
|
|
print('-'*60)
|
|
|
|
fname0 = fdir + 'initial_density_'+str(0)+'.dat'
|
|
fname1 = fdir + 'final_density_'+str(0)+'.dat'
|
|
|
|
MEAN0,ranges=read_borg_vol(fname0)
|
|
MEAN0=MEAN0*0.;
|
|
VAR0=copy(MEAN0)
|
|
MEAN1=copy(MEAN0)
|
|
VAR1=copy(MEAN0)
|
|
norm=0.
|
|
|
|
idat=smin
|
|
|
|
fname0 = fdir + 'initial_density_'+str(idat)+'.dat'
|
|
fname1 = fdir + 'final_density_'+str(idat)+'.dat'
|
|
#and (idat<smin+1000)
|
|
while((os.path.exists(fname0))):
|
|
auxdata0,auxranges0=read_borg_vol(fname0)
|
|
auxdata1,auxranges1=read_borg_vol(fname1)
|
|
auxx0=auxdata0
|
|
auxx1=auxdata1
|
|
MEAN0+=auxx0
|
|
VAR0+=auxx0**2
|
|
MEAN1+=auxx1
|
|
VAR1+=auxx1**2
|
|
|
|
norm+=1
|
|
idat+=step
|
|
fname0 = fdir + 'initial_density_'+str(idat)+'.dat'
|
|
fname1 = fdir + 'final_density_'+str(idat)+'.dat'
|
|
del auxranges0
|
|
del auxdata0
|
|
del auxranges1
|
|
del auxdata1
|
|
|
|
MEAN0/=norm
|
|
VAR0/=norm
|
|
VAR0-=MEAN0**2
|
|
VAR0=sqrt(fabs(VAR0))
|
|
|
|
MEAN1/=norm
|
|
VAR1/=norm
|
|
VAR1-=MEAN1**2
|
|
VAR1=sqrt(fabs(VAR1))
|
|
|
|
|
|
return MEAN0,VAR0,MEAN1,VAR1,ranges
|
|
|
|
def get_mean_density_fdir(fdir,init,steps):
|
|
""" estimate ensemble mean
|
|
"""
|
|
import progressbar as pb
|
|
|
|
print('-'*60)
|
|
print('Get 3D ensemble mean density field')
|
|
print('-'*60)
|
|
|
|
fname0,fname1=build_filelist(fdir)
|
|
|
|
fname0=fname0[init::steps]
|
|
fname1=fname1[init::steps]
|
|
|
|
borg=read_borg_vol(fname0[0])
|
|
MEAN0 = borg.density
|
|
RANGES0 = borg.ranges
|
|
MEAN0=MEAN0*0.;
|
|
VAR0=copy(MEAN0)
|
|
MEAN1=copy(MEAN0)
|
|
VAR1=copy(MEAN0)
|
|
norm0=0.
|
|
norm1=0.
|
|
|
|
for fn in pb.ProgressBar(len(fname0))(fname0):
|
|
auxborg=read_borg_vol(fn)
|
|
auxdata0 = auxborg.density
|
|
MEAN0+=auxdata0
|
|
VAR0+=auxdata0**2.
|
|
norm0+=1.
|
|
del auxdata0
|
|
del auxborg
|
|
|
|
for fn in pb.ProgressBar(len(fname1))(fname1):
|
|
auxborg1=read_borg_vol(fn)
|
|
auxdata1 = auxborg1.density
|
|
MEAN1+=auxdata1
|
|
VAR1+=auxdata1**2.
|
|
norm1+=1.
|
|
del auxdata1
|
|
del auxborg1
|
|
|
|
MEAN0/=norm0
|
|
VAR0/=norm0
|
|
VAR0-=MEAN0**2
|
|
VAR0=sqrt(fabs(VAR0))
|
|
|
|
MEAN1/=norm1
|
|
VAR1/=norm1
|
|
VAR1-=MEAN1**2
|
|
VAR1=sqrt(fabs(VAR1))
|
|
|
|
|
|
return MEAN0,VAR0,MEAN1,VAR1,ranges
|
|
|
|
|