from libcpp cimport bool from libcpp cimport string as cppstring import numpy as np cimport numpy as np from cpython cimport PyObject, Py_INCREF cimport cython np.import_array() cdef extern from "cosmopower.hpp" namespace "CosmoTool": cdef enum CosmoFunction "CosmoTool::CosmoPower::CosmoFunction": POWER_EFSTATHIOU "CosmoTool::CosmoPower::POWER_EFSTATHIOU", HU_WIGGLES "CosmoTool::CosmoPower::HU_WIGGLES", HU_BARYON "CosmoTool::CosmoPower::HU_BARYON", OLD_POWERSPECTRUM, POWER_BARDEEN "CosmoTool::CosmoPower::POWER_BARDEEN", POWER_SUGIYAMA "CosmoTool::CosmoPower::POWER_SUGIYAMA", POWER_BDM, POWER_TEST, HU_WIGGLES_ORIGINAL "CosmoTool::CosmoPower::HU_WIGGLES_ORIGINAL" cdef cppclass CosmoPower: double n double K0 double V_LG_CMB double CMB_VECTOR[3] double h double SIGMA8 double OMEGA_B double OMEGA_C double omega_B double omega_C double Theta_27 double OMEGA_0 double Omega double beta double OmegaEff double Gamma0 double normPower CosmoPower() void setFunction(CosmoFunction) void setFunction_BAO(CosmoFunction,double,double,double) void updateCosmology() void updatePhysicalCosmology() void normalize(double,double) void setNormalization(double) double power(double) cdef class CosmologyPower: """CosmologyPower(**cosmo) CosmologyPower manages and compute power spectra computation according to different approximation given in the litterature. Keyword arguments: omega_B_0 (float): relative baryon density omega_M_0 (float): relative matter density h (float): Hubble constant relative to 100 km/s/Mpc ns (float): power law of the large scale inflation spectrum """ cdef CosmoPower power def __init__(self,**cosmo): """Constructor Keyword arguments: * omega_B_0 * omega_M_0 * h * ns * T27 """ self.power = CosmoPower() self.power.OMEGA_B = cosmo['omega_B_0'] self.power.OMEGA_C = cosmo['omega_M_0']-cosmo['omega_B_0'] self.power.h = cosmo['h'] if 'ns' in cosmo: self.power.n = cosmo['ns'] if 'T27' in cosmo: self.power.Theta_27 = cosmo['T27'] assert self.power.OMEGA_C > 0 self.power.updateCosmology() def setNormalization(self,A): """Set manual normalization for A_S""" self.power.setNormalization(A) def normalize(self,s8,k_min=-1,k_max=-1): """normalize(self, sigma8) Compute the normalization of the power spectrum using sigma8. Arguments: sigma8 (float): standard deviation of density field smoothed at 8 Mpc/h """ self.power.SIGMA8 = s8 self.power.normalize(k_min, k_max) def setFunction(self,funcname): """setFunction(self, funcname) Choose an approximation to use for the computation of the power spectrum Arguments: funcname (str): the name of the approximation. It can be either EFSTATHIOU, HU_WIGGLES, HU_BARYON, BARDEEN or SUGIYAMA. """ cdef CosmoFunction f f = POWER_EFSTATHIOU if funcname=='EFSTATHIOU': f = POWER_EFSTATHIOU elif funcname=='HU_WIGGLES': f = HU_WIGGLES elif funcname=='HU_BARYON': f = HU_BARYON elif funcname=='BARDEEN': f = POWER_BARDEEN elif funcname=='SUGIYAMA': f = POWER_SUGIYAMA elif funcname=='HU_WIGGLES_ORIGINAL': f = HU_WIGGLES_ORIGINAL else: raise ValueError("Unknown function name " + funcname) self.power.setFunction(f) cdef double _compute(self, double k): k *= self.power.h return self.power.power(k) * self.power.h**3 def compute(self, k): """compute(self, k) Compute the power spectrum for mode which length k. Arguments: k (float): Mode for which to evaluate the power spectrum. It can be a scalar or a numpy array. The units must be in 'h Mpc^{-1}'. Returns: a scalar or a numpy array depending on the type of the k argument """ cdef np.ndarray out cdef double kval cdef tuple i if isinstance(k, np.ndarray): out = np.empty(k.shape, dtype=np.float64) for i,kval in np.ndenumerate(k): out[i] = self._compute(kval) return out else: return self._compute(k)