#include "hdf5_array.hpp" #include "miniargs.hpp" #include "mykdtree.hpp" #include "omptl/algorithm" #include "openmp.hpp" #include "sphSmooth.hpp" #include "yorick.hpp" #include #include #include #include #include using namespace std; using namespace CosmoTool; #define N_SPH 32 struct VCoord { float v[3]; float mass; }; using boost::format; using boost::str; typedef boost::multi_array array_type; typedef boost::multi_array array3_type; typedef boost::multi_array array4_type; ComputePrecision getVelocity(const VCoord &v, int i) { return v.mass * v.v[i]; } ComputePrecision getMass(const VCoord &v) { return v.mass; } typedef SPHSmooth MySmooth; typedef MySmooth::SPHTree MyTree; typedef MyTree::Cell MyCell; template void computeInterpolatedField(MyTree *tree1, double boxsize, int Nres, double cx, double cy, double cz, array3_type &bins, array3_type &arr, FuncT func, double rLimit2) { int rz_max = 0; #pragma omp parallel shared(rz_max) { MySmooth smooth1(tree1, N_SPH); #pragma omp for collapse(3) schedule(dynamic) for (int rz = 0; rz < Nres; rz++) { for (int ry = 0; ry < Nres; ry++) { for (int rx = 0; rx < Nres; rx++) { if (rz > rz_max) { rz_max = rz; cout << format("[%d] %d / %d") % smp_get_thread_id() % rz % Nres << endl; } double px = (rx)*boxsize / Nres - cx; double py = (ry)*boxsize / Nres - cy; double pz = (rz)*boxsize / Nres - cz; MyTree::coords c = {float(px), float(py), float(pz)}; double r2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2]; if (r2 > rLimit2) { arr[rx][ry][rz] = 0; continue; } uint32_t numInCell = bins[rx][ry][rz]; if (numInCell > N_SPH) smooth1.fetchNeighbours(c, numInCell); else smooth1.fetchNeighbours(c); arr[rx][ry][rz] = smooth1.computeSmoothedValue(c, func); } } } } } int main(int argc, char **argv) { char *fname1, *outFile; double rLimit, boxsize, rLimit2, cx, cy, cz; int Nres; int periodic; MiniArgDesc args[] = {{"INPUT DATA1", &fname1, MINIARG_STRING}, {"RADIUS LIMIT", &rLimit, MINIARG_DOUBLE}, {"BOXSIZE", &boxsize, MINIARG_DOUBLE}, {"RESOLUTION", &Nres, MINIARG_INT}, {"CX", &cx, MINIARG_DOUBLE}, {"CY", &cy, MINIARG_DOUBLE}, {"CZ", &cz, MINIARG_DOUBLE}, {"OUTPUT FILE", &outFile, MINIARG_STRING}, {"PERIODIC", &periodic, MINIARG_INT}, {0, 0, MINIARG_NULL}}; if (!parseMiniArgs(argc, argv, args)) return 1; H5::H5File in_f(fname1, 0); H5::H5File out_f(outFile, H5F_ACC_TRUNC); array_type v1_data; uint64_t N1_points, N2_points; array3_type bins(boost::extents[Nres][Nres][Nres]); rLimit2 = rLimit * rLimit; hdf5_read_array(in_f, "particles", v1_data); assert(v1_data.shape()[1] == 7); N1_points = v1_data.shape()[0]; cout << "Got " << N1_points << " in the first file." << endl; MyCell *allCells_1 = new MyCell[N1_points]; #pragma omp parallel for schedule(static) for (uint32_t i = 0; i < Nres * Nres * Nres; i++) bins.data()[i] = 0; cout << "Shuffling data in cells..." << endl; #pragma omp parallel for schedule(static) for (uint64_t i = 0; i < N1_points; i++) { for (int j = 0; j < 3; j++) allCells_1[i].coord[j] = v1_data[i][j]; for (int k = 0; k < 3; k++) allCells_1[i].val.pValue.v[k] = v1_data[i][3 + k]; allCells_1[i].val.pValue.mass = v1_data[i][6]; allCells_1[i].active = true; allCells_1[i].val.weight = 0.0; long rx = floor((allCells_1[i].coord[0] + cx) * Nres / boxsize + 0.5); long ry = floor((allCells_1[i].coord[1] + cy) * Nres / boxsize + 0.5); long rz = floor((allCells_1[i].coord[2] + cz) * Nres / boxsize + 0.5); if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres) continue; auto &b = bins[rx][ry][rz]; #pragma omp atomic b++; } v1_data.resize(boost::extents[1][1]); hdf5_write_array(out_f, "num_in_cell", bins); cout << "Building trees..." << endl; MyTree tree1(allCells_1, N1_points); tree1.setPeriodic(periodic != 0, boxsize); cout << "Creating smoothing filter..." << endl; // array3_type out_rad_1(boost::extents[Nres][Nres][Nres]); cout << "Weighing..." << endl; int rz_max = 0; #pragma omp parallel shared(rz_max) { MySmooth smooth1(&tree1, N_SPH); #pragma omp for collapse(3) schedule(dynamic, 8) for (int rz = 0; rz < Nres; rz++) { for (int ry = 0; ry < Nres; ry++) { for (int rx = 0; rx < Nres; rx++) { if (rz > rz_max) { rz_max = rz; (cout << rz << " / " << Nres << endl).flush(); } double pz = (rz)*boxsize / Nres - cz; double py = (ry)*boxsize / Nres - cy; double px = (rx)*boxsize / Nres - cx; MyTree::coords c = {float(px), float(py), float(pz)}; double r2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2]; if (r2 > rLimit2) { continue; } uint32_t numInCell = bins[rx][ry][rz]; if (numInCell > N_SPH) smooth1.fetchNeighbours(c, numInCell); else smooth1.fetchNeighbours(c); smooth1.addGridSite(c); } } } } cout << "Interpolating..." << endl; array3_type interpolated(boost::extents[Nres][Nres][Nres]); computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, bins, interpolated, getMass, rLimit2); hdf5_write_array(out_f, "density", interpolated); // out_f.flush(); for (int i = 0; i < 3; i++) { computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, bins, interpolated, boost::bind(getVelocity, _1, i), rLimit2); hdf5_write_array(out_f, str(format("p%d") % i), interpolated); } return 0; };