#include #include #include #include #include #include #include "powerSpectrum.hpp" using namespace std; #define USE_GSL #define TOLERANCE 1e-6 #define NUM_ITERATION 8000 #define POWER_EFSTATHIOU 1 #define HU_WIGGLES 2 #define HU_BARYON 3 #define OLD_POWERSPECTRUM 4 #define POWER_BARDEEN 5 #define POWER_SUGIYAMA 6 #define POWER_BDM 7 #define POWER_TEST 8 #define POWER_SPECTRUM POWER_EFSTATHIOU namespace Cosmology { double n = 1.0; double K0 = 1; double V0 = 627; double CMB_VECTOR[3] = { 56.759, -540.02, 313.50 }; // WMAP5 double h = 0.719; double SIGMA8 = 0.77; double OMEGA_B = 0.043969; double OMEGA_C = 0.21259; // WMAP5-modification //double h = 0.719; //double SIGMA8 = 0.77; //double OMEGA_B = 0; //double OMEGA_C = 0.21259+0.043969; // LCDM STRAUSS ? //double h = 0.67; //double SIGMA8 = 0.67; //double OMEGA_B = 0; //double OMEGA_C = 0.30; // SCDM STRAUSS //double h = 0.5; //double SIGMA8= 1.05; //double OMEGA_B = 0; //double OMEGA_C = 1; // Sugiyama test //double h = 0.5; //double SIGMA8= 0.5;//1.05; //double OMEGA_B = 0.0125*4; //double OMEGA_C = 0.1-OMEGA_B; // HU TEST //double h = 0.5; //double SIGMA8 = 0.5; //double OMEGA_B = 0.09; //double OMEGA_C = 0.21; // HDM STRAUSS //double h = 0.5; //double SIGMA8 = 0.86; //double OMEGA_B = 0; //double OMEGA_C = 1; // FOR "BEST FIT" //double h = 0.82; //double SIGMA8 = 0.76; //double OMEGA_B = 0.043969; //double OMEGA_C = 0.15259; // FOR JUSZKIEWICZ CHECKING (CDM) ! WARNING ! He smoothes // with a gaussian filter the density field, i.e. one has // to multiply P(k) by exp(-k^2 R^2) with R the radius // of the filter. Dammit ! //double h = 0.5; //double SIGMA8=1/2.5; //double OMEGA_B=0.; //double OMEGA_C=1; //#define JUSZKIEWICZ_PATCH //#define RJUSZ 6.0 // (BDM) //double h = 0.5; //double SIGMA8=1; //double OMEGA_B=0.0; //double OMEGA_C=0.4; // FOR HU CHECKING //double h = 0.5; //double SIGMA8= 1; //double OMEGA_B=0.09; //double OMEGA_C=0.21; double OMEGA_0 = OMEGA_B+OMEGA_C; double Omega = OMEGA_0; double Theta_27 = 2.728 / 2.7; double beta = pow(OMEGA_0, 5./9); double OmegaEff = OMEGA_0 * h * h; double Gamma0 = OMEGA_0 * h * h; /* * This is \hat{tophat} */ double tophatFilter(double u) { if (u != 0) return 3 / (u*u*u) * (sin(u) - u * cos(u)); else return 1; } /* * This is \tilde{w} */ double externalFilter(double u) { if (u != 0) return 1 - sin(u)/u; return 0.; } double powC(double q, double alpha_c) { return 14.2 / alpha_c + 386 / (1 + 69.9 * pow(q, 1.08)); } double T_tilde_0(double q, double alpha_c, double beta_c) { double a = log(M_E + 1.8 * beta_c * q); return a / ( a + powC(q, alpha_c) * q * q); } double j_0(double x) { if (x == 0) return 1.0; return sin(x)/x; } double powG(double y) { double a = sqrt(1 + y); return y * (-6 * a + (2 + 3 * y) *log((a + 1)/(a - 1))); } /* * This function returns the power spectrum evaluated at k (in Mpc, not in Mpc/h). */ double powerSpectrum(double k, double normPower) { #if POWER_SPECTRUM == POWER_EFSTATHIOU double a = 6.4/Gamma0; double b = 3/Gamma0; double c = 1.7/Gamma0; double nu = 1.13; double f = (a*k) + pow(b*k,1.5) + pow(c*k,2); // EFSTATHIOU ET AL. (1992) return normPower * pow(k,n) * pow(1+pow(f,nu),(-2/nu)); #endif // EISENSTEIN ET HU (1998) // FULL POWER SPECTRUM WITH BARYONS AND WIGGLES #if POWER_SPECTRUM == HU_WIGGLES // EISENSTEIN ET HU (1998) // FULL POWER SPECTRUM WITH BARYONS AND WIGGLES double k_silk = 1.6 * pow(OMEGA_B * h * h, 0.52) * pow(OmegaEff, 0.73) * (1 + pow(10.4 * OmegaEff, -0.95)); double z_eq = 2.50e4 * OmegaEff * pow(Theta_27, -4); double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75))); double f = 1 / (1 + pow(k * s / 5.4, 4)); double k_eq = 7.46e-2 * OmegaEff * pow(Theta_27, -2); double a1 = pow(46.9 * OmegaEff, 0.670) * (1 + pow(32.1 * OmegaEff, -0.532)); double a2 = pow(12.0 * OmegaEff, 0.424) * (1 + pow(45.0 * OmegaEff, -0.582)); double alpha_c = pow(a1, -OMEGA_B/ OMEGA_0) * pow(a2, -pow(OMEGA_B / OMEGA_0, 3)); double q = k / (13.41 * k_eq); double b1_betac = 0.944 * 1/(1 + pow(458 * OmegaEff, -0.708)); double b2_betac = pow(0.395 * OmegaEff, -0.0266); double beta_c = 1/ ( 1 + b1_betac * (pow(OMEGA_C / OMEGA_0, b2_betac) - 1) ); double T_c = f * T_tilde_0(q, 1, beta_c) + (1 - f) * T_tilde_0(q, alpha_c, beta_c); double b1_zd = 0.313 * pow(OmegaEff, -0.419) * (1 + 0.607 * pow(OmegaEff, 0.674)); double b2_zd = 0.238 * pow(OmegaEff, 0.223); double z_d = 1291 * pow(OmegaEff, 0.251) / (1 + 0.659 * pow(OmegaEff, 0.828)) * (1 + b1_zd * pow(OmegaEff, b2_zd)); double R_d = 31.5 * OMEGA_B * h * h * pow(Theta_27, -4) * 1e3 / z_d; double alpha_b = 2.07 * k_eq * s * pow(1 + R_d, -0.75) * powG((1 + z_eq)/(1 + z_d)); double beta_b = 0.5 + OMEGA_B / OMEGA_0 + (3 - 2 * OMEGA_B / OMEGA_0) * sqrt(pow(17.2 * OmegaEff, 2) + 1); double beta_node = 8.41 * pow(OmegaEff, 0.435); double s_tilde = s * pow(1 + pow(beta_node / (k * s), 3), -1./3); double T_b = (T_tilde_0(q, 1, 1) / (1 + pow(k * s / 5.2, 2)) + alpha_b / (1 + pow(beta_b / (k * s), 3)) * exp(-pow(k/k_silk, 1.4))) * j_0(k * s_tilde); double T_k = OMEGA_B/OMEGA_0 * T_b + OMEGA_C/OMEGA_0 * T_c; return normPower * pow(k,n) * T_k * T_k; #endif // EISENSTEIN ET AL. (2008), SHAPED POWER SPECTRUM WITH BARYON, WITHOUT WIGGLES #if POWER_SPECTRUM == HU_BARYON double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75))); double alpha_Gamma = 1 - 0.328 * log(431 * OmegaEff) * OMEGA_B / OMEGA_0 + 0.38 * log(22.3 * OmegaEff) * pow(OMEGA_B / OMEGA_0, 2); double GammaEff = OMEGA_0 * h * (alpha_Gamma + (1 - alpha_Gamma)/(1 + pow(0.43 * k * s, 4))); double q = k/(h*GammaEff) * pow(Theta_27, 2); double L_0 = log(2 * M_E + 1.8 * q); double C_0 = 14.2 + 731 / (1 + 62.5 * q); double T0 = L_0 / (L_0 + C_0 * q * q); return normPower * pow(k,n) * T0 * T0; #endif #if POWER_SPECTRUM == OLD_POWERSPECTRUM // OLD FUNCTION: static const double l = 1/(Omega * h*h); static const double alpha = 1.7 * l, beta = 9.0 * pow(l, 1.5), gamma = l*l; return normPower * pow(k,n) * pow(1 + alpha * k + beta * pow(k,1.5) + gamma *k*k,-2); #endif #if POWER_SPECTRUM == POWER_SUGIYAMA double q = k * Theta_27*Theta_27 / (OmegaEff * exp(-OMEGA_B - sqrt(h/0.5)*OMEGA_B/OMEGA_0)); double L0 = log(2*M_E + 1.8 * q); double C0 = 14.2 + 731 / (1 + 62.5 * q); double T_k = L0 / (L0 + C0 * q*q); // double poly = 1 + 3.89 * q + pow(16.1*q,2) + pow(5.46*q,3) + pow(6.71*q,4); // double T_k = log(1+2.34*q)/(2.34*q) * pow(poly,-0.25); return normPower * pow(k,n) * T_k * T_k; #endif #if POWER_SPECTRUM == POWER_BARDEEN double q = k / (OmegaEff); double poly = 1 + 3.89 * q + pow(16.1*q,2) + pow(5.46*q,3) + pow(6.71*q,4); double T_k = log(1+2.34*q)/(2.34*q) * pow(poly,-0.25); return normPower * pow(k,n) * T_k * T_k; #endif #if POWER_SPECTRUM == POWER_BDM k /= h*h; double alpha1 = 190; double Gmu = 4.6; double alpha2 = 11.5; double alpha3 = 11; double alpha4 = 12.55; double alpha5 = 0.0004; return normPower*k*alpha1*alpha1*Gmu*Gmu/(1+(alpha2*k)+pow(alpha3*k,2)+pow(alpha4*k,3))*pow(1+pow(alpha5/k,2), -2); #endif #if POWER_SPECTRUM == POWER_TEST return 1/(1+k*k); #endif } /* * This function computes the normalization of the power spectrum. It requests * a sigma8 (density fluctuations within 8 Mpc/h) */ double gslPowSpecNorm(double k, void *params) { double f = tophatFilter(k*8.0/h); return powerSpectrum(k, 1.0)*k*k*f*f; } double computePowSpecNorm(double sigma8) { int Nsteps = 30000; double normVal = 0; #ifndef USE_GSL for (int i = 1; i <= Nsteps; i++) { double t = i * 1.0/(Nsteps+1); // Change of variable ! double k = (1-t)/t * K0; // The filter double filter_val = tophatFilter(k*8.0/h); // The powerspectrum double powVal = powerSpectrum(k, 1.0); // Multiply by the tophat filter powVal *= filter_val*filter_val; powVal *= k*k; // Account for change of variable powVal /= (t*t); // Integrate ! normVal += powVal; } normVal /= 2*M_PI*M_PI; // The dt element normVal *= 1.0/(Nsteps+1) * K0; #else double abserr; gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION); gsl_function f; f.function = gslPowSpecNorm; f.params = 0; gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &normVal, &abserr); gsl_integration_workspace_free(w); normVal /= (2*M_PI*M_PI); #endif return sigma8*sigma8/normVal; } /* * This function computes the variance of the Local Group velocity components * for a survey which depth is topHatRad1 (in Mpc/h). This variance should * be multiplied by (H \beta)^2 to be equal to a velocity^2. */ double gslVariance(double k, void *params) { double R1 = *(double *)params; double f = externalFilter(k * R1 / h); double a = f*f; #ifdef JUSZKIEWICZ_PATCH a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h))); #endif a *= powerSpectrum(k, 1.0); return a; } double computeVariance(double powNorm, double topHatRad1) { int Nsteps = 100000; double varVal = 0; #ifndef USE_GSL for (int i = 1; i <= Nsteps; i++) { double t = i * 1.0/(Nsteps+1); // Change of variable ! double k = (1-t)/t * K0; double powVal = powerSpectrum(k, powNorm); double filter1Val = externalFilter(k*topHatRad1/h); #ifdef JUSZKIEWICZ_PATCH powVal *= exp(-k*k*(RJUSZ*RJUSZ/(h*h))); #endif powVal *= filter1Val*filter1Val; powVal /= (t*t); varVal += powVal; } varVal *= 1.0/(Nsteps) * K0; varVal *= 1.0/(6*M_PI*M_PI); #else double abserr; gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION); gsl_function f; f.function = gslVariance; f.params = &topHatRad1; gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr); gsl_integration_workspace_free(w); varVal *= powNorm/(6*M_PI*M_PI); #endif return varVal; } /* * This function computes the same quantity as computeVariance but * for a survey infinitely deep. */ double gslVarianceZero(double k, void *params) { double a = 1.0; #ifdef JUSZKIEWICZ_PATCH a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h))); #endif a *= powerSpectrum(k, 1.0); return a; } double computeVarianceZero(double powNorm) { int Nsteps = 100000; double varVal = 0; #ifndef USE_GSL for (int i = 1; i <= Nsteps; i++) { double t = i * 1.0/(Nsteps+1); // Change of variable ! double k = (1-t)/t * K0; double powVal = powerSpectrum(k, powNorm); #ifdef JUSZKIEWICZ_PATCH powVal *= exp(-k*k*(RJUSZ*RJUSZ/h*h)); #endif powVal /= (t*t); varVal += powVal; } varVal *= 1.0/(Nsteps+1) * K0; varVal *= 1.0/(6*M_PI*M_PI); #else double abserr; gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION); gsl_function f; f.function = gslVarianceZero; f.params = 0; gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr); gsl_integration_workspace_free(w); varVal *= powNorm/(6*M_PI*M_PI); #endif return varVal; } /* * This function computes the correlation between the infinitely deep * velocity of the Local Group and the one estimated from a survey * which depth is topHatRad1. * This corresponds to \gamma. * This quantity must be multiplied by H \beta to be equal to a velocity^2. */ double gslCorrel(double k, void *params) { double R1 = ((double *)params)[0]; double a = externalFilter(k * R1 / h);// * externalFilter(k * R2 / h); #ifdef JUSZKIEWICZ_PATCH a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h))); #endif a *= powerSpectrum(k, 1.0); return a; } double gslCorrelBis(double t, void *params) { double k = (1-t)/t; double v = gslCorrel(k, params); return v/(t*t); } double gslCorrel2(double k, void *params) { double R1 = ((double *)params)[0]; double R2 = ((double *)params)[1]; double a = externalFilter(k * R1 / h) * externalFilter(k * R2 / h); #ifdef JUSZKIEWICZ_PATCH a *= exp(-k*k*(RJUSZ*RJUSZ/(h*h))); #endif a *= powerSpectrum(k, 1.0) ; return a; } double gslCorrel2bis(double t, void *params) { double k = (1-t)/t; double v = gslCorrel2(k, params); return v/(t*t); } double computeCorrel(double powNorm, double topHatRad1) { int Nsteps = 100000; double varVal = 0; #ifndef USE_GSL for (int i = 1; i <= Nsteps; i++) { double t = i * 1.0/(Nsteps+1); // Change of variable ! double k = (1-t)/t * K0; double powVal = powerSpectrum(k, powNorm); double filter1Val = externalFilter(k*topHatRad1/h); #ifdef JUSZKIEWICZ_PATCH powVal*=exp(-k*k*(RJUSZ*RJUSZ/h*h)); #endif powVal *= filter1Val; powVal /= (t*t); varVal += powVal; } varVal *= 1.0/(Nsteps) * K0; varVal *= 1.0/(6*M_PI*M_PI); #else double abserr; gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION); gsl_function f; f.params = &topHatRad1; #if 1 f.function = gslCorrelBis; gsl_integration_qag (&f, 0, 1, 0, TOLERANCE, NUM_ITERATION, GSL_INTEG_GAUSS61, w, &varVal, &abserr); #else f.function = gslCorrel; gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr); #endif gsl_integration_workspace_free(w); varVal *= powNorm/(6*M_PI*M_PI); #endif return varVal; } /* * This function computes the correlation between the infinitely deep * velocity of the Local Group and the one estimated from a survey * which depth is topHatRad1. * This corresponds to \gamma. * This quantity must be multiplied by H \beta to be equal to a velocity^2. */ double computeCorrel2(double powNorm, double topHatRad1, double topHatRad2) { int Nsteps = 100000; double varVal = 0; #ifndef USE_GSL for (int i = 1; i <= Nsteps; i++) { double t = i * 1.0/(Nsteps+1); // Change of variable ! double k = (1-t)/t * K0; double powVal = powerSpectrum(k, powNorm); double filter1Val = externalFilter(k*topHatRad1/h); double filter2Val = externalFilter(k*topHatRad2/h); powVal *= filter1Val * filter2Val; powVal /= (t*t); varVal += powVal; } varVal *= 1.0/(Nsteps) * K0; varVal *= 1.0/(6*M_PI*M_PI); #else double abserr; gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION); gsl_function f; double rads[] = {topHatRad1, topHatRad2 }; f.params = rads; #if 1 f.function = gslCorrel2bis; gsl_integration_qag (&f, 0, 1, 0, TOLERANCE, NUM_ITERATION, GSL_INTEG_GAUSS61, w, &varVal, &abserr); #else f.function = gslCorrel2; gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &varVal, &abserr); #endif gsl_integration_workspace_free(w); varVal *= powNorm/(6*M_PI*M_PI); #endif return varVal; } void updateCosmology() { OMEGA_0 = OMEGA_B+OMEGA_C; Omega = OMEGA_0; Theta_27 = 2.728 / 2.7; beta = pow(OMEGA_0, 5./9); OmegaEff = OMEGA_0 * h * h; Gamma0 = OMEGA_0 * h * h; #if 0 cout << "Cosmology is :" << endl << " O0=" << OMEGA_0 << " Theta=" << Theta_27 << " beta=" << beta << " h=" << h << " G0=" << Gamma0 << endl << " OmegaB=" << OMEGA_B << " Omega_C=" << OMEGA_C << endl; #endif } };