/*+ This is CosmoTool (./src/fourier/details/euclidian_transform.hpp) -- Copyright (C) Guilhem Lavaux (2007-2014) guilhem.lavaux@gmail.com This software is a computer program whose purpose is to provide a toolbox for cosmological data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...) This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms. +*/ #ifndef __DETAILS_EUCLIDIAN_TRANSFORM #define __DETAILS_EUCLIDIAN_TRANSFORM namespace CosmoTool { template class EuclidianFourierTransform: public FourierTransform { public: typedef typename EuclidianFourierMapBase::DimArray DimArray; private: typedef FFTW_Calls calls; EuclidianFourierMapReal *realMap; EuclidianFourierMapComplex *fourierMap; typename calls::plan_type m_analysis, m_synthesis; double volume; long N, Nc; DimArray m_dims, m_dims_hc; std::vector m_L; public: EuclidianFourierTransform(const DimArray& dims, const std::vector& L) { realMap = 0; create_plan(dims, L); } void create_plan(const DimArray& dims, const std::vector& L) { assert(L.size() == dims.size()); std::vector dk(L.size()); std::vector swapped_dims(dims.size()); if (realMap != 0) { delete realMap; delete fourierMap; calls::destroy_plan(m_synthesis); calls::destroy_plan(m_analysis); } m_dims = dims; m_dims_hc = dims; m_dims_hc[0] = dims[0]/2+1; m_L = L; N = 1; Nc = 1; volume = 1; for (int i = 0; i < dims.size(); i++) { N *= dims[i]; Nc *= m_dims_hc[i]; volume *= L[i]; dk[i] = 2*M_PI/L[i]; swapped_dims[dims.size()-1-i] = dims[i]; } realMap = new EuclidianFourierMapReal( boost::shared_ptr(calls::alloc_real(N), std::ptr_fun(calls::free)), m_dims); fourierMap = new EuclidianFourierMapComplex( boost::shared_ptr >( (std::complex*)calls::alloc_complex(Nc), std::ptr_fun(calls::free)), dims[0], m_dims_hc, dk); { m_analysis = calls::plan_dft_r2c( dims.size(), &swapped_dims[0], realMap->data(), (typename calls::complex_type *)fourierMap->data(), FFTW_DESTROY_INPUT|FFTW_MEASURE); m_synthesis = calls::plan_dft_c2r( dims.size(), &swapped_dims[0], (typename calls::complex_type *)fourierMap->data(), realMap->data(), FFTW_DESTROY_INPUT|FFTW_MEASURE); } } virtual ~EuclidianFourierTransform() { delete realMap; delete fourierMap; calls::destroy_plan(m_synthesis); calls::destroy_plan(m_analysis); } void synthesis() { calls::execute(m_synthesis); realMap->scale(1/volume); } void synthesis_unnormed() { calls::execute(m_synthesis); } void analysis() { calls::execute(m_analysis); fourierMap->scale(volume/N); } void analysis_unnormed() { calls::execute(m_analysis); } void synthesis_conjugate() { calls::execute(m_analysis); fourierMap->scale(1/volume); } void analysis_conjugate() { calls::execute(m_synthesis); realMap->scale(volume/N); } const FourierMap >& fourierSpace() const { return *fourierMap; } FourierMap >& fourierSpace() { return *fourierMap; } const FourierMap& realSpace() const { return *realMap; } FourierMap& realSpace() { return *realMap; } FourierTransform *mimick() const { return new EuclidianFourierTransform(m_dims, m_L); } }; template class EuclidianFourierTransform_1d: public EuclidianFourierTransform { private: template static std::vector make_1d_vector(T2 a) { T2 arr[2] = { a}; return std::vector(&arr[0],&arr[1]); } public: EuclidianFourierTransform_1d(int Nx, double Lx) : EuclidianFourierTransform(make_1d_vector(Nx), make_1d_vector(Lx)) { } virtual ~EuclidianFourierTransform_1d() {} }; template class EuclidianFourierTransform_2d: public EuclidianFourierTransform { private: template static std::vector make_2d_vector(T2 a, T2 b) { T2 arr[2] = { a, b}; return std::vector(&arr[0], &arr[2]); } public: EuclidianFourierTransform_2d(int Nx, int Ny, double Lx, double Ly) : EuclidianFourierTransform(make_2d_vector(Nx, Ny), make_2d_vector(Lx, Ly)) { } virtual ~EuclidianFourierTransform_2d() {} }; template class EuclidianFourierTransform_3d: public EuclidianFourierTransform { private: template static std::vector make_3d_vector(T2 a, T2 b, T2 c) { T2 arr[3] = { a, b, c}; return std::vector(&arr[0], &arr[3]); } public: EuclidianFourierTransform_3d(int Nx, int Ny, int Nz, double Lx, double Ly, double Lz) : EuclidianFourierTransform(make_3d_vector(Nx, Ny, Nz), make_3d_vector(Lx, Ly, Lz)) { } virtual ~EuclidianFourierTransform_3d() {} }; }; #endif