/*+ This is CosmoTool (./sample/simple3DFilter.cpp) -- Copyright (C) Guilhem Lavaux (2007-2014) guilhem.lavaux@gmail.com This software is a computer program whose purpose is to provide a toolbox for cosmological data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...) This software is governed by the CeCILL license under French law and abiding by the rules of distribution of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL license as circulated by CEA, CNRS and INRIA at the following URL "http://www.cecill.info". As a counterpart to the access to the source code and rights to copy, modify and redistribute granted by the license, users are provided only with a limited warranty and the software's author, the holder of the economic rights, and the successive licensors have only limited liability. In this respect, the user's attention is drawn to the risks associated with loading, using, modifying and/or developing or reproducing the software by the user in light of its specific status of free software, that may mean that it is complicated to manipulate, and that also therefore means that it is reserved for developers and experienced professionals having in-depth computer knowledge. Users are therefore encouraged to load and test the software's suitability as regards their requirements in conditions enabling the security of their systems and/or data to be ensured and, more generally, to use and operate it in the same conditions as regards security. The fact that you are presently reading this means that you have had knowledge of the CeCILL license and that you accept its terms. +*/ #include #include "yorick.hpp" #include "sphSmooth.hpp" #include "mykdtree.hpp" #include "miniargs.hpp" #include #include "hdf5_array.hpp" #include using namespace std; using namespace CosmoTool; #define N_SPH 16 struct VCoord{ float v[3]; }; template ComputePrecision getVelocity(const VCoord& v) { return v.v[i]; } ComputePrecision getUnity(const VCoord& v) { return 1.0; } typedef SPHSmooth MySmooth; typedef MySmooth::SPHTree MyTree; typedef MyTree::Cell MyCell; int main(int argc, char **argv) { typedef boost::multi_array array_type; typedef boost::multi_array array3_type; typedef boost::multi_array array4_type; char *fname1, *fname2; double rLimit, boxsize, rLimit2, cx, cy, cz; int Nres; MiniArgDesc args[] = { { "INPUT DATA1", &fname1, MINIARG_STRING }, { "RADIUS LIMIT", &rLimit, MINIARG_DOUBLE }, { "BOXSIZE", &boxsize, MINIARG_DOUBLE }, { "RESOLUTION", &Nres, MINIARG_INT }, { "CX", &cx, MINIARG_DOUBLE }, { "CY", &cy, MINIARG_DOUBLE }, { "CZ", &cz, MINIARG_DOUBLE }, { 0, 0, MINIARG_NULL } }; if (!parseMiniArgs(argc, argv, args)) return 1; H5::H5File in_f(fname1, 0); H5::H5File out_f("fields.h5", H5F_ACC_TRUNC); array_type v1_data; uint32_t N1_points, N2_points; array3_type bins(boost::extents[Nres][Nres][Nres]); rLimit2 = rLimit*rLimit; hdf5_read_array(in_f, "particles", v1_data); assert(v1_data.shape()[1] == 6); N1_points = v1_data.shape()[0]; cout << "Got " << N1_points << " in the first file." << endl; MyCell *allCells_1 = new MyCell[N1_points]; for (long i = 0; i < Nres*Nres*Nres; i++) bins.data()[i] = 0; cout << "Shuffling data in cells..." << endl; for (int i = 0 ; i < N1_points; i++) { for (int j = 0; j < 3; j++) allCells_1[i].coord[j] = v1_data[i][j]; for (int k = 0; k < 3; k++) allCells_1[i].val.pValue.v[k] = v1_data[i][3+k]; allCells_1[i].active = true; allCells_1[i].val.weight = 0.0; long rx = floor((allCells_1[i].coord[0]+cx)*Nres/boxsize+0.5); long ry = floor((allCells_1[i].coord[1]+cy)*Nres/boxsize+0.5); long rz = floor((allCells_1[i].coord[2]+cz)*Nres/boxsize+0.5); if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres) continue; bins[rx][ry][rz]++; } v1_data.resize(boost::extents[1][1]); hdf5_write_array(out_f, "num_in_cell", bins); cout << "Building trees..." << endl; MyTree tree1(allCells_1, N1_points); cout << "Creating smoothing filter..." << endl; array3_type out_den_1(boost::extents[Nres][Nres][Nres]); array4_type out_v3d_1(boost::extents[Nres][Nres][Nres][3]); array3_type out_rad_1(boost::extents[Nres][Nres][Nres]); cout << "Weighing..." << endl; #pragma omp parallel { MySmooth smooth1(&tree1, N_SPH); #pragma omp for schedule(dynamic) for (int rz = 0; rz < Nres; rz++) { double pz = (rz)*boxsize/Nres-cz; cout << rz << " / " << Nres << endl; for (int ry = 0; ry < Nres; ry++) { double py = (ry)*boxsize/Nres-cy; for (int rx = 0; rx < Nres; rx++) { double px = (rx)*boxsize/Nres-cx; MyTree::coords c = { px, py, pz }; double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2]; if (r2 > rLimit2) { continue; } uint32_t numInCell = bins[rx][ry][rz]; if (numInCell > N_SPH) smooth1.fetchNeighbours(c, numInCell); else smooth1.fetchNeighbours(c); #pragma omp critical smooth1.addGridSite(c); } } } } cout << "Interpolating..." << endl; #pragma omp parallel { MySmooth smooth1(&tree1, N_SPH); #pragma omp for schedule(dynamic) for (int rz = 0; rz < Nres; rz++) { double pz = (rz)*boxsize/Nres-cz; cout << rz << " / " << Nres << endl; for (int ry = 0; ry < Nres; ry++) { double py = (ry)*boxsize/Nres-cy; for (int rx = 0; rx < Nres; rx++) { double px = (rx)*boxsize/Nres-cx; MyTree::coords c = { px, py, pz }; double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2]; if (r2 > rLimit2) { out_v3d_1[rx][ry][rz][0] = 0; out_v3d_1[rx][ry][rz][1] = 0; out_v3d_1[rx][ry][rz][2] = 0; out_den_1[rx][ry][rz] = 0; out_rad_1[rx][ry][rz] = -1; continue; } uint32_t numInCell = bins[rx][ry][rz]; if (numInCell > N_SPH) smooth1.fetchNeighbours(c, numInCell); else smooth1.fetchNeighbours(c); float val; out_rad_1[rx][ry][rz] = smooth1.getSmoothingLen(); out_v3d_1[rx][ry][rz][0] = smooth1.computeSmoothedValue(c, getVelocity<0>); out_v3d_1[rx][ry][rz][1] = smooth1.computeSmoothedValue(c, getVelocity<1>); out_v3d_1[rx][ry][rz][2] = smooth1.computeSmoothedValue(c, getVelocity<2>); out_den_1[rx][ry][rz] = smooth1.computeSmoothedValue(c, getUnity); } } } } hdf5_write_array(out_f, "radii", out_rad_1); hdf5_write_array(out_f, "velocity", out_v3d_1); hdf5_write_array(out_f, "density", out_den_1); return 0; };