from cpython cimport bool from cython cimport view from cython.parallel import prange, parallel from libc.math cimport sin, cos, abs, floor, round, sqrt import numpy as np cimport numpy as npx cimport cython from copy cimport * from openmp cimport omp_get_max_threads, omp_get_thread_num ctypedef npx.float64_t DTYPE_t DTYPE=np.float64 FORMAT_DTYPE="d" __all__=["project_cic","line_of_sight_projection","spherical_projection","DTYPE","interp3d","interp2d"] cdef extern from "project_tool.hpp" namespace "": DTYPE_t compute_projection(DTYPE_t *vertex_value, DTYPE_t *u, DTYPE_t *u0, DTYPE_t rho) nogil @cython.boundscheck(False) @cython.cdivision(True) cdef int interp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y, DTYPE_t z, DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy, iz cdef DTYPE_t f[2][2][2] cdef DTYPE_t rx, ry, rz cdef int jx, jy, jz rx = (inv_delta*x) ry = (inv_delta*y) rz = (inv_delta*z) ix = int(floor(rx)) iy = int(floor(ry)) iz = int(floor(rz)) rx -= ix ry -= iy rz -= iz jx = (ix+1)%Ngrid jy = (iy+1)%Ngrid jz = (iz+1)%Ngrid ix = ix%Ngrid iy = iy%Ngrid iz = iz%Ngrid if (ix < 0) or (jx >= Ngrid): return -1 if (iy < 0) or (jy >= Ngrid): return -2 if (iz < 0) or (jz >= Ngrid): return -3 f[0][0][0] = (1-rx)*(1-ry)*(1-rz) f[1][0][0] = ( rx)*(1-ry)*(1-rz) f[0][1][0] = (1-rx)*( ry)*(1-rz) f[1][1][0] = ( rx)*( ry)*(1-rz) f[0][0][1] = (1-rx)*(1-ry)*( rz) f[1][0][1] = ( rx)*(1-ry)*( rz) f[0][1][1] = (1-rx)*( ry)*( rz) f[1][1][1] = ( rx)*( ry)*( rz) retval[0] = \ d[ix ,iy ,iz ] * f[0][0][0] + \ d[jx ,iy ,iz ] * f[1][0][0] + \ d[ix ,jy ,iz ] * f[0][1][0] + \ d[jx ,jy ,iz ] * f[1][1][0] + \ d[ix ,iy ,jz ] * f[0][0][1] + \ d[jx ,iy ,jz ] * f[1][0][1] + \ d[ix ,jy ,jz ] * f[0][1][1] + \ d[jx ,jy ,jz ] * f[1][1][1] return 0 @cython.boundscheck(False) @cython.cdivision(True) cdef int ngp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y, DTYPE_t z, DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy, iz cdef DTYPE_t f[2][2][2] cdef DTYPE_t rx, ry, rz cdef int jx, jy, jz rx = (inv_delta*x) ry = (inv_delta*y) rz = (inv_delta*z) ix = int(round(rx)) iy = int(round(ry)) iz = int(round(rz)) ix = ix%Ngrid iy = iy%Ngrid iz = iz%Ngrid retval[0] = d[ix ,iy ,iz ] return 0 @cython.boundscheck(False) @cython.cdivision(True) cdef int ngp3d_INTERNAL(DTYPE_t x, DTYPE_t y, DTYPE_t z, DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy, iz cdef DTYPE_t f[2][2][2] cdef DTYPE_t rx, ry, rz cdef int jx, jy, jz rx = (inv_delta*x) ry = (inv_delta*y) rz = (inv_delta*z) ix = int(round(rx)) iy = int(round(ry)) iz = int(round(rz)) if (ix < 0 or ix >= Ngrid): return -1 if (iy < 0 or iy >= Ngrid): return -2 if (iz < 0 or iz >= Ngrid): return -3 retval[0] = d[ix ,iy ,iz ] return 0 @cython.boundscheck(False) @cython.cdivision(True) cdef int interp3d_INTERNAL(DTYPE_t x, DTYPE_t y, DTYPE_t z, DTYPE_t[:,:,:] d, DTYPE_t Lbox, DTYPE_t *retval) nogil: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy, iz cdef DTYPE_t f[2][2][2] cdef DTYPE_t rx, ry, rz rx = (inv_delta*x) ry = (inv_delta*y) rz = (inv_delta*z) ix = int(floor(rx)) iy = int(floor(ry)) iz = int(floor(rz)) rx -= ix ry -= iy rz -= iz if ((ix < 0) or (ix+1) >= Ngrid): return -1 if ((iy < 0) or (iy+1) >= Ngrid): return -2 if ((iz < 0) or (iz+1) >= Ngrid): return -3 # assert ((ix >= 0) and ((ix+1) < Ngrid)) # assert ((iy >= 0) and ((iy+1) < Ngrid)) # assert ((iz >= 0) and ((iz+1) < Ngrid)) f[0][0][0] = (1-rx)*(1-ry)*(1-rz) f[1][0][0] = ( rx)*(1-ry)*(1-rz) f[0][1][0] = (1-rx)*( ry)*(1-rz) f[1][1][0] = ( rx)*( ry)*(1-rz) f[0][0][1] = (1-rx)*(1-ry)*( rz) f[1][0][1] = ( rx)*(1-ry)*( rz) f[0][1][1] = (1-rx)*( ry)*( rz) f[1][1][1] = ( rx)*( ry)*( rz) retval[0] = \ d[ix ,iy ,iz ] * f[0][0][0] + \ d[ix+1,iy ,iz ] * f[1][0][0] + \ d[ix ,iy+1,iz ] * f[0][1][0] + \ d[ix+1,iy+1,iz ] * f[1][1][0] + \ d[ix ,iy ,iz+1] * f[0][0][1] + \ d[ix+1,iy ,iz+1] * f[1][0][1] + \ d[ix ,iy+1,iz+1] * f[0][1][1] + \ d[ix+1,iy+1,iz+1] * f[1][1][1] return 0 @cython.boundscheck(False) def interp3d(x not None, y not None, z not None, npx.ndarray[DTYPE_t, ndim=3] d not None, DTYPE_t Lbox, bool periodic=False, bool centered=True, bool ngp=False): """ interp3d(x,y,z,d,Lbox,periodic=False,centered=True,ngp=False) -> interpolated values Compute the tri-linear interpolation of the given field (d) at the given position (x,y,z). It assumes that they are box-centered coordinates. So (x,y,z) == (0,0,0) is equivalent to the pixel at (Nx/2,Ny/2,Nz/2) with Nx,Ny,Nz = d.shape. If periodic is set, it assumes the box is periodic """ cdef npx.ndarray[DTYPE_t] out cdef DTYPE_t[:] out_slice cdef DTYPE_t[:] ax, ay, az cdef DTYPE_t[:,:,:] in_slice cdef DTYPE_t retval cdef long i cdef long Nelt cdef int myperiodic, myngp cdef DTYPE_t shifter myperiodic = periodic myngp = ngp if centered: shifter = Lbox/2 else: shifter = 0 if d.shape[0] != d.shape[1] or d.shape[0] != d.shape[2]: raise ValueError("Grid must have a cubic shape") ierror = IndexError("Interpolating outside range") if type(x) == np.ndarray or type(y) == np.ndarray or type(z) == np.ndarray: if type(x) != np.ndarray or type(y) != np.ndarray or type(z) != np.ndarray: raise ValueError("All or no array. No partial arguments") ax = x ay = y az = z assert ax.size == ay.size and ax.size == az.size out = np.empty(x.shape, dtype=DTYPE) out_slice = out in_slice = d Nelt = ax.size with nogil: if not myngp: if myperiodic: for i in prange(Nelt): if interp3d_INTERNAL_periodic(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i]) < 0: with gil: raise ierror else: for i in prange(Nelt): if interp3d_INTERNAL(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i]) < 0: with gil: raise ierror else: if myperiodic: for i in prange(Nelt): if ngp3d_INTERNAL_periodic(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i]) < 0: with gil: raise ierror else: for i in prange(Nelt): if ngp3d_INTERNAL(shifter+ax[i], shifter+ay[i], shifter+az[i], in_slice, Lbox, &out_slice[i]) < 0: with gil: raise ierror return out else: if not myngp: if periodic: if interp3d_INTERNAL_periodic(shifter+x, shifter+y, shifter+z, d, Lbox, &retval) < 0: raise ierror else: if interp3d_INTERNAL(shifter+x, shifter+y, shifter+z, d, Lbox, &retval) < 0: raise ierror else: if periodic: if ngp3d_INTERNAL_periodic(shifter+x, shifter+y, shifter+z, d, Lbox, &retval) < 0: raise ierror else: if ngp3d_INTERNAL(shifter+x, shifter+y, shifter+z, d, Lbox, &retval) < 0: raise ierror return retval @cython.boundscheck(False) @cython.cdivision(True) cdef DTYPE_t interp2d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y, npx.ndarray[DTYPE_t, ndim=2] d, DTYPE_t Lbox) except? 0: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy cdef DTYPE_t f[2][2] cdef DTYPE_t rx, ry cdef int jx, jy rx = (inv_delta*x + Ngrid/2) ry = (inv_delta*y + Ngrid/2) ix = int(floor(rx)) iy = int(floor(ry)) rx -= ix ry -= iy while ix < 0: ix += Ngrid while iy < 0: iy += Ngrid jx = (ix+1)%Ngrid jy = (iy+1)%Ngrid assert ((ix >= 0) and ((jx) < Ngrid)) assert ((iy >= 0) and ((jy) < Ngrid)) f[0][0] = (1-rx)*(1-ry) f[1][0] = ( rx)*(1-ry) f[0][1] = (1-rx)*( ry) f[1][1] = ( rx)*( ry) return \ d[ix ,iy ] * f[0][0] + \ d[jx ,iy ] * f[1][0] + \ d[ix ,jy ] * f[0][1] + \ d[jx ,jy ] * f[1][1] @cython.boundscheck(False) @cython.cdivision(True) cdef DTYPE_t interp2d_INTERNAL(DTYPE_t x, DTYPE_t y, npx.ndarray[DTYPE_t, ndim=2] d, DTYPE_t Lbox) except? 0: cdef int Ngrid = d.shape[0] cdef DTYPE_t inv_delta = Ngrid/Lbox cdef int ix, iy cdef DTYPE_t f[2][2] cdef DTYPE_t rx, ry rx = (inv_delta*x + Ngrid/2) ry = (inv_delta*y + Ngrid/2) ix = int(floor(rx)) iy = int(floor(ry)) rx -= ix ry -= iy if ((ix < 0) or (ix+1) >= Ngrid): raise IndexError("X coord out of bound (ix=%d, x=%g)" % (ix,x)) if ((iy < 0) or (iy+1) >= Ngrid): raise IndexError("Y coord out of bound (iy=%d, y=%g)" % (iy,y)) # assert ((ix >= 0) and ((ix+1) < Ngrid)) # assert ((iy >= 0) and ((iy+1) < Ngrid)) # assert ((iz >= 0) and ((iz+1) < Ngrid)) f[0][0] = (1-rx)*(1-ry) f[1][0] = ( rx)*(1-ry) f[0][1] = (1-rx)*( ry) f[1][1] = ( rx)*( ry) return \ d[ix ,iy ] * f[0][0] + \ d[ix+1,iy ] * f[1][0] + \ d[ix ,iy+1] * f[0][1] + \ d[ix+1,iy+1] * f[1][1] def interp2d(x not None, y not None, npx.ndarray[DTYPE_t, ndim=2] d not None, DTYPE_t Lbox, bool periodic=False): cdef npx.ndarray[DTYPE_t] out cdef npx.ndarray[DTYPE_t] ax, ay cdef int i if d.shape[0] != d.shape[1]: raise ValueError("Grid must have a square shape") if type(x) == np.ndarray or type(y) == np.ndarray: if type(x) != np.ndarray or type(y) != np.ndarray: raise ValueError("All or no array. No partial arguments") ax = x ay = y assert ax.size == ay.size out = np.empty(x.shape, dtype=DTYPE) if periodic: for i in range(ax.size): out[i] = interp2d_INTERNAL_periodic(ax[i], ay[i], d, Lbox) else: for i in range(ax.size): out[i] = interp2d_INTERNAL(ax[i], ay[i], d, Lbox) return out else: if periodic: return interp2d_INTERNAL_periodic(x, y, d, Lbox) else: return interp2d_INTERNAL(x, y, d, Lbox) @cython.boundscheck(False) @cython.cdivision(True) cdef void INTERNAL_project_cic_no_mass(npx.ndarray[DTYPE_t, ndim=3] g, npx.ndarray[DTYPE_t, ndim=2] x, int Ngrid, float Lbox): cdef double half_Box = 0.5*Lbox cdef double delta_Box = Ngrid/Lbox cdef int i cdef double a[3], c[3] cdef int b[3] cdef int do_not_put for i in range(x.shape[0]): do_not_put = 0 for j in range(3): a[j] = (x[i,j]+half_Box)*delta_Box b[j] = int(floor(a[j])) a[j] -= b[j] c[j] = 1-a[j] if b[j] < 0 or b[j]+1 >= Ngrid: do_not_put = True print("b = %g %g %g" % (b[0], b[1], b[2])) print("a = %g %g %g" % (a[0], a[1], a[2])) if not do_not_put: g[b[0],b[1],b[2]] += c[0]*c[1]*c[2] g[b[0]+1,b[1],b[2]] += a[0]*c[1]*c[2] g[b[0],b[1]+1,b[2]] += c[0]*a[1]*c[2] g[b[0]+1,b[1]+1,b[2]] += a[0]*a[1]*c[2] g[b[0],b[1],b[2]+1] += c[0]*c[1]*a[2] g[b[0]+1,b[1],b[2]+1] += a[0]*c[1]*a[2] g[b[0],b[1]+1,b[2]+1] += c[0]*a[1]*a[2] g[b[0]+1,b[1]+1,b[2]+1] += a[0]*a[1]*a[2] @cython.boundscheck(False) @cython.cdivision(True) cdef void INTERNAL_project_cic_no_mass_periodic(npx.ndarray[DTYPE_t, ndim=3] g, npx.ndarray[DTYPE_t, ndim=2] x, int Ngrid, double Lbox): cdef double half_Box = 0.5*Lbox cdef double delta_Box = Ngrid/Lbox cdef int i cdef double a[3], c[3] cdef int b[3], b1[3] cdef int do_not_put cdef DTYPE_t[:,:] ax cdef DTYPE_t[:,:,:] ag ax = x ag = g for i in range(x.shape[0]): do_not_put = 0 for j in range(3): a[j] = (ax[i,j]+half_Box)*delta_Box b[j] = int(floor(a[j])) b1[j] = (b[j]+1) % Ngrid a[j] -= b[j] c[j] = 1-a[j] b[j] %= Ngrid ag[b[0],b[1],b[2]] += c[0]*c[1]*c[2] ag[b1[0],b[1],b[2]] += a[0]*c[1]*c[2] ag[b[0],b1[1],b[2]] += c[0]*a[1]*c[2] ag[b1[0],b1[1],b[2]] += a[0]*a[1]*c[2] ag[b[0],b[1],b1[2]] += c[0]*c[1]*a[2] ag[b1[0],b[1],b1[2]] += a[0]*c[1]*a[2] ag[b[0],b1[1],b1[2]] += c[0]*a[1]*a[2] ag[b1[0],b1[1],b1[2]] += a[0]*a[1]*a[2] @cython.boundscheck(False) @cython.cdivision(True) cdef void INTERNAL_project_cic_with_mass(npx.ndarray[DTYPE_t, ndim=3] g, npx.ndarray[DTYPE_t, ndim=2] x, npx.ndarray[DTYPE_t, ndim=1] mass, int Ngrid, double Lbox): cdef double half_Box = 0.5*Lbox cdef double delta_Box = Ngrid/Lbox cdef int i cdef double a[3], c[3] cdef DTYPE_t m0 cdef int b[3] for i in range(x.shape[0]): do_not_put = False for j in range(3): a[j] = (x[i,j]+half_Box)*delta_Box b[j] = int(a[j]) a[j] -= b[j] c[j] = 1-a[j] if b[j] < 0 or b[j]+1 >= Ngrid: do_not_put = True if not do_not_put: m0 = mass[i] g[b[0],b[1],b[2]] += c[0]*c[1]*c[2]*m0 g[b[0]+1,b[1],b[2]] += a[0]*c[1]*c[2]*m0 g[b[0],b[1]+1,b[2]] += c[0]*a[1]*c[2]*m0 g[b[0]+1,b[1]+1,b[2]] += a[0]*a[1]*c[2]*m0 g[b[0],b[1],b[2]+1] += c[0]*c[1]*a[2]*m0 g[b[0]+1,b[1],b[2]+1] += a[0]*c[1]*a[2]*m0 g[b[0],b[1]+1,b[2]+1] += c[0]*a[1]*a[2]*m0 g[b[0]+1,b[1]+1,b[2]+1] += a[0]*a[1]*a[2]*m0 @cython.boundscheck(False) @cython.cdivision(True) cdef void INTERNAL_project_cic_with_mass_periodic(npx.ndarray[DTYPE_t, ndim=3] g, npx.ndarray[DTYPE_t, ndim=2] x, npx.ndarray[DTYPE_t, ndim=1] mass, int Ngrid, double Lbox): cdef double half_Box = 0.5*Lbox, m0 cdef double delta_Box = Ngrid/Lbox cdef int i cdef double a[3], c[3] cdef int b[3], b1[3] for i in range(x.shape[0]): for j in range(3): a[j] = (x[i,j]+half_Box)*delta_Box b[j] = int(floor(a[j])) b1[j] = b[j]+1 while b1[j] < 0: b1[j] += Ngrid while b1[j] >= Ngrid: b1[j] -= Ngrid a[j] -= b[j] c[j] = 1-a[j] m0 = mass[i] g[b[0],b[1],b[2]] += c[0]*c[1]*c[2]*m0 g[b1[0],b[1],b[2]] += a[0]*c[1]*c[2]*m0 g[b[0],b1[1],b[2]] += c[0]*a[1]*c[2]*m0 g[b1[0],b1[1],b[2]] += a[0]*a[1]*c[2]*m0 g[b[0],b[1],b1[2]] += c[0]*c[1]*a[2]*m0 g[b1[0],b[1],b1[2]] += a[0]*c[1]*a[2]*m0 g[b[0],b1[1],b1[2]] += c[0]*a[1]*a[2]*m0 g[b1[0],b1[1],b1[2]] += a[0]*a[1]*a[2]*m0 def project_cic(npx.ndarray[DTYPE_t, ndim=2] x not None, npx.ndarray[DTYPE_t, ndim=1] mass, int Ngrid, double Lbox, bool periodic = False): """ project_cic(x array (N,3), mass (may be None), Ngrid, Lbox, periodict) This function does a Cloud-In-Cell projection of a 3d unstructured dataset. First argument is a Nx3 array of coordinates. Second argument is an optinal mass. Ngrid is the size output grid and Lbox is the physical size of the grid. """ cdef npx.ndarray[DTYPE_t, ndim=3] g if x.shape[1] != 3: raise ValueError("Invalid shape for x array") if mass != None and mass.shape[0] != x.shape[0]: raise ValueError("Mass array and coordinate array must have the same number of elements") g = np.zeros((Ngrid,Ngrid,Ngrid),dtype=DTYPE) if not periodic: if mass == None: INTERNAL_project_cic_no_mass(g, x, Ngrid, Lbox) else: INTERNAL_project_cic_with_mass(g, x, mass, Ngrid, Lbox) else: if mass == None: INTERNAL_project_cic_no_mass_periodic(g, x, Ngrid, Lbox) else: INTERNAL_project_cic_with_mass_periodic(g, x, mass, Ngrid, Lbox) return g def tophat_fourier_internal(npx.ndarray[DTYPE_t, ndim=1] x not None): cdef int i cdef npx.ndarray[DTYPE_t] y cdef DTYPE_t x0 y = np.empty(x.size, dtype=DTYPE) for i in range(x.size): x0 = x[i] if abs(x0)<1e-5: y[i] = 1 else: y[i] = (3*(sin(x0) - x0 * cos(x0))/(x0**3)) return y def tophat_fourier(x not None): cdef npx.ndarray[DTYPE_t, ndim=1] b if type(x) != np.ndarray: raise ValueError("x must be a Numpy array") b = np.array(x, dtype=DTYPE).ravel() b = tophat_fourier_internal(b) return b.reshape(x.shape) @cython.boundscheck(False) @cython.cdivision(True) cdef DTYPE_t cube_integral(DTYPE_t u[3], DTYPE_t u0[3], int r[1]) nogil: cdef DTYPE_t alpha_max cdef DTYPE_t tmp_a cdef DTYPE_t v[3] cdef int i, j alpha_max = 10.0 # A big number for i in xrange(3): if u[i] == 0.: continue if u[i] < 0: tmp_a = -u0[i]/u[i] else: tmp_a = (1-u0[i])/u[i] if tmp_a < alpha_max: alpha_max = tmp_a j = i for i in range(3): u0[i] += u[i]*alpha_max r[0] = j return alpha_max @cython.boundscheck(False) @cython.cdivision(True) cdef DTYPE_t cube_integral_trilin(DTYPE_t u[3], DTYPE_t u0[3], int r[1], DTYPE_t vertex_value[8]) nogil: cdef DTYPE_t alpha_max cdef DTYPE_t I, tmp_a cdef DTYPE_t v[3], term[4] cdef int i, j, q alpha_max = 10.0 # A big number j = 0 for i in range(3): if u[i] == 0.: continue if u[i] < 0: tmp_a = -u0[i]/u[i] else: tmp_a = (1-u0[i])/u[i] if tmp_a < alpha_max: alpha_max = tmp_a j = i I = compute_projection(vertex_value, u, u0, alpha_max) for i in xrange(3): u0[i] += u[i]*alpha_max # alpha_max is the integration length # we integrate between 0 and alpha_max (curvilinear coordinates) r[0] = j return I @cython.boundscheck(False) cdef DTYPE_t integrator0(DTYPE_t[:,:,:] density, DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1]) nogil: cdef DTYPE_t d d = density[iu0[0], iu0[1], iu0[2]] return cube_integral(u, u0, jumper)*d @cython.boundscheck(False) cdef DTYPE_t integrator1(DTYPE_t[:,:,:] density, DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1]) nogil: cdef DTYPE_t vertex_value[8] cdef DTYPE_t d cdef int a[3][2], i for i in xrange(3): a[i][0] = iu0[i] a[i][1] = iu0[i]+1 vertex_value[0 + 2*0 + 4*0] = density[a[0][0], a[1][0], a[2][0]] vertex_value[1 + 2*0 + 4*0] = density[a[0][1], a[1][0], a[2][0]] vertex_value[0 + 2*1 + 4*0] = density[a[0][0], a[1][1], a[2][0]] vertex_value[1 + 2*1 + 4*0] = density[a[0][1], a[1][1], a[2][0]] vertex_value[0 + 2*0 + 4*1] = density[a[0][0], a[1][0], a[2][1]] vertex_value[1 + 2*0 + 4*1] = density[a[0][1], a[1][0], a[2][1]] vertex_value[0 + 2*1 + 4*1] = density[a[0][0], a[1][1], a[2][1]] vertex_value[1 + 2*1 + 4*1] = density[a[0][1], a[1][1], a[2][1]] return cube_integral_trilin(u, u0, jumper, vertex_value) @cython.boundscheck(False) cdef DTYPE_t C_line_of_sight_projection(DTYPE_t[:,:,:] density, DTYPE_t a_u[3], DTYPE_t min_distance, DTYPE_t max_distance, DTYPE_t[:] shifter, int integrator_id) nogil except? 0: cdef DTYPE_t u[3], ifu0[3], u0[3], utot[3] cdef int u_delta[3] cdef int iu0[3] cdef int i cdef int N = density.shape[0] cdef int half_N = density.shape[0]/2 cdef int completed cdef DTYPE_t I0, d, dist2, delta, s, max_distance2 cdef int jumper[1] cdef DTYPE_t (*integrator)(DTYPE_t[:,:,:], DTYPE_t u[3], DTYPE_t u0[3], int u_delta[3], int iu0[3], int jumper[1]) nogil if integrator_id == 0: integrator = integrator0 else: integrator = integrator1 max_distance2 = max_distance**2 for i in range(3): u[i] = a_u[i] u0[i] = a_u[i]*min_distance ifu0[i] = half_N+u0[i]+shifter[i] if (ifu0[i] <= 0 or ifu0[i] >= N): return 0 iu0[i] = int(floor(ifu0[i])) u0[i] = ifu0[i]-iu0[i] u_delta[i] = 1 if iu0[i] > 0 else -1 if (not ((iu0[i]>= 0) and (iu0[i] < N))): with gil: raise RuntimeError("iu0[%d] = %d !!" % (i,iu0[i])) if (not (u0[i]>=0 and u0[i]<=1)): with gil: raise RuntimeError("u0[%d] = %g !" % (i,u0[i])) completed = 0 if ((iu0[0] >= N) or (iu0[0] <= 0) or (iu0[1] >= N) or (iu0[1] <= 0) or (iu0[2] >= N) or (iu0[2] <= 0)): completed = 1 I0 = 0 jumper[0] = 0 while completed == 0: I0 += integrator(density, u, u0, u_delta, iu0, jumper) if u[jumper[0]] < 0: iu0[jumper[0]] -= 1 u0[jumper[0]] = 1 else: iu0[jumper[0]] += 1 u0[jumper[0]] = 0 if ((iu0[0] >= N) or (iu0[0] <= 0) or (iu0[1] >= N) or (iu0[1] <= 0) or (iu0[2] >= N) or (iu0[2] <= 0)): completed = 1 else: dist2 = 0 for i in range(3): delta = iu0[i]+u0[i]-half_N-shifter[i] dist2 += delta*delta if (dist2 > max_distance2): # Remove the last portion of the integral #delta = sqrt(dist2) - max_distance #I0 -= d*delta completed = 1 return I0 def line_of_sight_projection(DTYPE_t[:,:,:] density not None, DTYPE_t[:] a_u not None, DTYPE_t min_distance, DTYPE_t max_distance, DTYPE_t[:] shifter not None, int integrator_id=0): cdef DTYPE_t u[3] u[0] = a_u[0] u[1] = a_u[1] u[2] = a_u[2] C_line_of_sight_projection(density, u, min_distance, max_distance, shifter, integrator_id) cdef double _spherical_projloop(double theta, double phi, DTYPE_t[:,:,:] density, double min_distance, double max_distance, DTYPE_t[:] shifter, int integrator_id) nogil: cdef DTYPE_t u0[3] stheta = sin(theta) u0[0] = cos(phi)*stheta u0[1] = sin(phi)*stheta u0[2] = cos(theta) return C_line_of_sight_projection(density, u0, min_distance, max_distance, shifter, integrator_id) @cython.boundscheck(False) def spherical_projection(int Nside, npx.ndarray[DTYPE_t, ndim=3] density not None, DTYPE_t min_distance, DTYPE_t max_distance, int progress=1, int integrator_id=0, DTYPE_t[:] shifter = None, int booster=-1): import healpy as hp import progressbar as pb cdef int i cdef DTYPE_t[:] theta,phi cdef DTYPE_t[:,:,:] density_view cdef DTYPE_t[:] outm cdef int[:] job_done cdef npx.ndarray[DTYPE_t, ndim=1] outm_array cdef long N, N0 cdef double stheta cdef int tid if shifter is None: shifter = view.array(shape=(3,), format=FORMAT_DTYPE, itemsize=sizeof(DTYPE_t)) shifter[:] = 0 outm_array = np.empty(hp.nside2npix(Nside),dtype=DTYPE) outm = outm_array density_view = density if progress != 0: p = pb.ProgressBar(maxval=outm.size,widgets=[pb.Bar(), pb.ETA()]).start() N = omp_get_max_threads() N0 = outm.size if booster < 0: booster = 1000 job_done = view.array(shape=(N,), format="i", itemsize=sizeof(int)) job_done[:] = 0 theta,phi = hp.pix2ang(Nside, np.arange(N0)) with nogil, parallel(): tid = omp_get_thread_num() for i in prange(N0): if progress != 0 and (i%booster) == 0: with gil: p.update(_mysum(job_done)) outm[i] = _spherical_projloop(theta[i], phi[i], density_view, min_distance, max_distance, shifter, integrator_id) job_done[tid] += 1 if progress: p.finish() return outm_array