Tweaks for speed

This commit is contained in:
Guilhem Lavaux 2022-01-29 08:22:08 +01:00
parent 8ab094ad3d
commit d875416200
2 changed files with 128 additions and 135 deletions

View File

@ -1,22 +1,22 @@
#include "openmp.hpp"
#include "omptl/algorithm"
#include <cassert>
#include "yorick.hpp"
#include "sphSmooth.hpp"
#include "mykdtree.hpp"
#include "miniargs.hpp"
#include <H5Cpp.h>
#include "hdf5_array.hpp" #include "hdf5_array.hpp"
#include <iostream> #include "miniargs.hpp"
#include <boost/format.hpp> #include "mykdtree.hpp"
#include "omptl/algorithm"
#include "openmp.hpp"
#include "sphSmooth.hpp"
#include "yorick.hpp"
#include <H5Cpp.h>
#include <boost/bind.hpp> #include <boost/bind.hpp>
#include <boost/format.hpp>
#include <cassert>
#include <iostream>
using namespace std; using namespace std;
using namespace CosmoTool; using namespace CosmoTool;
#define N_SPH 32 #define N_SPH 32
struct VCoord{ struct VCoord {
float v[3]; float v[3];
float mass; float mass;
}; };
@ -27,80 +27,73 @@ typedef boost::multi_array<float, 2> array_type;
typedef boost::multi_array<float, 3> array3_type; typedef boost::multi_array<float, 3> array3_type;
typedef boost::multi_array<float, 4> array4_type; typedef boost::multi_array<float, 4> array4_type;
ComputePrecision getVelocity(const VCoord& v, int i) ComputePrecision getVelocity(const VCoord &v, int i) { return v.mass * v.v[i]; }
{
return v.mass * v.v[i];
}
ComputePrecision getMass(const VCoord& v) ComputePrecision getMass(const VCoord &v) { return v.mass; }
{
return v.mass;
}
typedef SPHSmooth<VCoord> MySmooth; typedef SPHSmooth<VCoord> MySmooth;
typedef MySmooth::SPHTree MyTree; typedef MySmooth::SPHTree MyTree;
typedef MyTree::Cell MyCell; typedef MyTree::Cell MyCell;
template<typename FuncT> template <typename FuncT>
void computeInterpolatedField(MyTree *tree1, double boxsize, int Nres, double cx, double cy, double cz, void computeInterpolatedField(MyTree *tree1, double boxsize, int Nres,
array3_type& bins, array3_type& arr, FuncT func, double rLimit2) double cx, double cy, double cz,
{ array3_type &bins, array3_type &arr, FuncT func,
#pragma omp parallel double rLimit2) {
int rz_max = 0;
#pragma omp parallel shared(rz_max)
{ {
MySmooth smooth1(tree1, N_SPH); MySmooth smooth1(tree1, N_SPH);
#pragma omp for schedule(dynamic)
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
cout << format("[%d] %d / %d") % smp_get_thread_id() % rz % Nres << endl; #pragma omp for collapse(3) schedule(dynamic)
for (int ry = 0; ry < Nres; ry++) for (int rz = 0; rz < Nres; rz++) {
{
double py = (ry)*boxsize/Nres-cy;
for (int rx = 0; rx < Nres; rx++)
{
double px = (rx)*boxsize/Nres-cx;
MyTree::coords c = { float(px), float(py), float(pz) };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2]; for (int ry = 0; ry < Nres; ry++) {
if (r2 > rLimit2) for (int rx = 0; rx < Nres; rx++) {
{ if (rz > rz_max) {
arr[rx][ry][rz] = 0; rz_max = rz;
continue; cout << format("[%d] %d / %d") % smp_get_thread_id() % rz % Nres
} << endl;
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
arr[rx][ry][rz] = smooth1.computeSmoothedValue(c, func);
}
} }
double px = (rx)*boxsize / Nres - cx;
double py = (ry)*boxsize / Nres - cy;
double pz = (rz)*boxsize / Nres - cz;
MyTree::coords c = {float(px), float(py), float(pz)};
double r2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2];
if (r2 > rLimit2) {
arr[rx][ry][rz] = 0;
continue;
}
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
arr[rx][ry][rz] = smooth1.computeSmoothedValue(c, func);
}
} }
}
} }
} }
int main(int argc, char **argv) int main(int argc, char **argv) {
{
char *fname1, *outFile; char *fname1, *outFile;
double rLimit, boxsize, rLimit2, cx, cy, cz; double rLimit, boxsize, rLimit2, cx, cy, cz;
int Nres; int Nres;
MiniArgDesc args[] = { MiniArgDesc args[] = {{"INPUT DATA1", &fname1, MINIARG_STRING},
{ "INPUT DATA1", &fname1, MINIARG_STRING }, {"RADIUS LIMIT", &rLimit, MINIARG_DOUBLE},
{ "RADIUS LIMIT", &rLimit, MINIARG_DOUBLE }, {"BOXSIZE", &boxsize, MINIARG_DOUBLE},
{ "BOXSIZE", &boxsize, MINIARG_DOUBLE }, {"RESOLUTION", &Nres, MINIARG_INT},
{ "RESOLUTION", &Nres, MINIARG_INT }, {"CX", &cx, MINIARG_DOUBLE},
{ "CX", &cx, MINIARG_DOUBLE }, {"CY", &cy, MINIARG_DOUBLE},
{ "CY", &cy, MINIARG_DOUBLE }, {"CZ", &cz, MINIARG_DOUBLE},
{ "CZ", &cz, MINIARG_DOUBLE }, {"OUTPUT FILE", &outFile, MINIARG_STRING},
{ "OUTPUT FILE", &outFile, MINIARG_STRING }, {0, 0, MINIARG_NULL}};
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, args)) if (!parseMiniArgs(argc, argv, args))
return 1; return 1;
@ -109,48 +102,48 @@ int main(int argc, char **argv)
H5::H5File out_f(outFile, H5F_ACC_TRUNC); H5::H5File out_f(outFile, H5F_ACC_TRUNC);
array_type v1_data; array_type v1_data;
uint64_t N1_points, N2_points; uint64_t N1_points, N2_points;
array3_type bins(boost::extents[Nres][Nres][Nres]); array3_type bins(boost::extents[Nres][Nres][Nres]);
rLimit2 = rLimit*rLimit; rLimit2 = rLimit * rLimit;
hdf5_read_array(in_f, "particles", v1_data); hdf5_read_array(in_f, "particles", v1_data);
assert(v1_data.shape()[1] == 7); assert(v1_data.shape()[1] == 7);
N1_points = v1_data.shape()[0]; N1_points = v1_data.shape()[0];
cout << "Got " << N1_points << " in the first file." << endl; cout << "Got " << N1_points << " in the first file." << endl;
MyCell *allCells_1 = new MyCell[N1_points]; MyCell *allCells_1 = new MyCell[N1_points];
#pragma omp parallel for schedule(static) #pragma omp parallel for schedule(static)
for (uint32_t i = 0; i < Nres*Nres*Nres; i++) for (uint32_t i = 0; i < Nres * Nres * Nres; i++)
bins.data()[i] = 0; bins.data()[i] = 0;
cout << "Shuffling data in cells..." << endl; cout << "Shuffling data in cells..." << endl;
#pragma omp parallel for schedule(static) #pragma omp parallel for schedule(static)
for (uint64_t i = 0 ; i < N1_points; i++) for (uint64_t i = 0; i < N1_points; i++) {
{ for (int j = 0; j < 3; j++)
for (int j = 0; j < 3; j++) allCells_1[i].coord[j] = v1_data[i][j];
allCells_1[i].coord[j] = v1_data[i][j]; for (int k = 0; k < 3; k++)
for (int k = 0; k < 3; k++) allCells_1[i].val.pValue.v[k] = v1_data[i][3 + k];
allCells_1[i].val.pValue.v[k] = v1_data[i][3+k]; allCells_1[i].val.pValue.mass = v1_data[i][6];
allCells_1[i].val.pValue.mass = v1_data[i][6]; allCells_1[i].active = true;
allCells_1[i].active = true; allCells_1[i].val.weight = 0.0;
allCells_1[i].val.weight = 0.0;
long rx = floor((allCells_1[i].coord[0]+cx)*Nres/boxsize+0.5); long rx = floor((allCells_1[i].coord[0] + cx) * Nres / boxsize + 0.5);
long ry = floor((allCells_1[i].coord[1]+cy)*Nres/boxsize+0.5); long ry = floor((allCells_1[i].coord[1] + cy) * Nres / boxsize + 0.5);
long rz = floor((allCells_1[i].coord[2]+cz)*Nres/boxsize+0.5); long rz = floor((allCells_1[i].coord[2] + cz) * Nres / boxsize + 0.5);
if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres) if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres)
continue; continue;
//#pragma omp atomic update auto &b = bins[rx][ry][rz];
bins[rx][ry][rz]++; #pragma omp atomic
} b++;
}
v1_data.resize(boost::extents[1][1]); v1_data.resize(boost::extents[1][1]);
hdf5_write_array(out_f, "num_in_cell", bins); hdf5_write_array(out_f, "num_in_cell", bins);
cout << "Building trees..." << endl; cout << "Building trees..." << endl;
@ -158,61 +151,59 @@ int main(int argc, char **argv)
cout << "Creating smoothing filter..." << endl; cout << "Creating smoothing filter..." << endl;
// array3_type out_rad_1(boost::extents[Nres][Nres][Nres]); // array3_type out_rad_1(boost::extents[Nres][Nres][Nres]);
cout << "Weighing..." << endl; cout << "Weighing..." << endl;
#pragma omp parallel int rz_max = 0;
#pragma omp parallel shared(rz_max)
{ {
MySmooth smooth1(&tree1, N_SPH); MySmooth smooth1(&tree1, N_SPH);
#pragma omp for schedule(dynamic)
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
(cout << rz << " / " << Nres << endl).flush(); #pragma omp for collapse(3) schedule(dynamic, 8)
for (int ry = 0; ry < Nres; ry++) for (int rz = 0; rz < Nres; rz++) {
{ for (int ry = 0; ry < Nres; ry++) {
double py = (ry)*boxsize/Nres-cy; for (int rx = 0; rx < Nres; rx++) {
for (int rx = 0; rx < Nres; rx++) if (rz > rz_max) {
{ rz_max = rz;
double px = (rx)*boxsize/Nres-cx; (cout << rz << " / " << Nres << endl).flush();
MyTree::coords c = { float(px), float(py), float(pz) };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
if (r2 > rLimit2)
{
continue;
}
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
#pragma omp critical
smooth1.addGridSite(c);
}
} }
(cout << " Done " << rz << endl).flush(); double pz = (rz)*boxsize / Nres - cz;
} double py = (ry)*boxsize / Nres - cy;
double px = (rx)*boxsize / Nres - cx;
MyTree::coords c = {float(px), float(py), float(pz)};
double r2 = c[0] * c[0] + c[1] * c[1] + c[2] * c[2];
if (r2 > rLimit2) {
continue;
}
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
smooth1.addGridSite(c);
}
}
}
} }
cout << "Interpolating..." << endl; cout << "Interpolating..." << endl;
array3_type interpolated(boost::extents[Nres][Nres][Nres]); array3_type interpolated(boost::extents[Nres][Nres][Nres]);
computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, bins,
bins, interpolated, getMass, rLimit2); interpolated, getMass, rLimit2);
hdf5_write_array(out_f, "density", interpolated); hdf5_write_array(out_f, "density", interpolated);
//out_f.flush(); // out_f.flush();
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz, bins,
bins, interpolated, boost::bind(getVelocity, _1, i), rLimit2); interpolated, boost::bind(getVelocity, _1, i),
hdf5_write_array(out_f, str(format("p%d") % i), interpolated); rLimit2);
hdf5_write_array(out_f, str(format("p%d") % i), interpolated);
} }
return 0; return 0;
}; };

View File

@ -192,7 +192,9 @@ void SPHSmooth<ValType,Ndims>::addGridSite(const typename SPHTree::coords& c)
{ {
ComputePrecision d = internal.distances[i]; ComputePrecision d = internal.distances[i];
SPHCell& cell = *(internal.ngb[i]); SPHCell& cell = *(internal.ngb[i]);
cell.val.weight += getKernel(d/internal.smoothRadius) / r3; double kernel_value = getKernel(d/internal.smoothRadius) / r3;
#pragma omp atomic
cell.val.weight += kernel_value;
} }
} }