Do 3d bubble for galaxies in ksz
This commit is contained in:
parent
adfc76a96d
commit
d58c617e63
@ -1,4 +1,5 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
import numexpr as ne
|
||||||
from .constants import *
|
from .constants import *
|
||||||
|
|
||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
@ -6,7 +7,7 @@ from .constants import *
|
|||||||
# -----------------------------------------------------------------------------
|
# -----------------------------------------------------------------------------
|
||||||
|
|
||||||
class KSZ_Profile(object):
|
class KSZ_Profile(object):
|
||||||
R_star= 0.015 # 15 kpc/h
|
R_star= 0.0 # 15 kpc/h
|
||||||
L_gal0 = 10**(0.4*(tmpp_cat['Msun']-tmpp_cat['Mstar']))
|
L_gal0 = 10**(0.4*(tmpp_cat['Msun']-tmpp_cat['Mstar']))
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
@ -58,31 +59,28 @@ class KSZ_Isothermal(KSZ_Profile):
|
|||||||
self.rho0 = self.sigma_FP**2/(2*np.pi*G) # * (Lgal/L_gal0)**(2./3)
|
self.rho0 = self.sigma_FP**2/(2*np.pi*G) # * (Lgal/L_gal0)**(2./3)
|
||||||
self.rGalaxy = self.R_gal*(Lgal/self.L_gal0)**(1./3)
|
self.rGalaxy = self.R_gal*(Lgal/self.L_gal0)**(1./3)
|
||||||
self.rInnerGalaxy = self.R_innergal*(Lgal/self.L_gal0)**(1./3)
|
self.rInnerGalaxy = self.R_innergal*(Lgal/self.L_gal0)**(1./3)
|
||||||
# self._prepare()
|
self._prepare()
|
||||||
|
|
||||||
def _prepare(self, x_min, x_max):
|
|
||||||
from scipy.integrate import quad
|
|
||||||
from numpy import sqrt, log10
|
|
||||||
|
|
||||||
lmin = log10(x_min)
|
|
||||||
lmax = log10(x_max)
|
|
||||||
|
|
||||||
x = 10**(np.arange(100)*(lmax-lmin)/100.+lmin)
|
|
||||||
profile = np.empty(x.size)
|
|
||||||
|
|
||||||
nu_tilde = lambda u: (1/(u**2*(1+u)))
|
def _prepare(self):
|
||||||
|
pass
|
||||||
for i in range(x.size):
|
|
||||||
profile[i] = 2*quad(lambda y: (nu_tilde(sqrt(x[i]**2+y**2))), 0, args.x)[0]
|
|
||||||
|
|
||||||
self._table = x,profile
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate_profile(self,r):
|
def evaluate_profile(self,r):
|
||||||
rho0, rGalaxy, rInner = self.rho0, self.rGalaxy, self.rInnerGalaxy
|
rho0, rGalaxy, rInner = self.rho0, self.rGalaxy, self.rInnerGalaxy
|
||||||
|
|
||||||
Q=rho0*2/r*np.arctan(np.sqrt((rGalaxy/r)**2 - 1))/Mpc
|
D = {'rho0':rho0, 'rGalaxy':rGalaxy, 'rInner': rInner, 'Mpc':Mpc }
|
||||||
# Q[r<rInner] = 0
|
|
||||||
|
Q = np.zeros(r.size)
|
||||||
|
|
||||||
|
cond = r <= rInner
|
||||||
|
D['r'] = r[cond]
|
||||||
|
ne.evaluate('rho0*2/(Mpc*r) * arctan(sqrt( (rGalaxy/r)**2 -1 ) - arctan(sqrt( (rInner/r)**2 - 1 ))',
|
||||||
|
local_dict=D, out=Q[cond])
|
||||||
|
|
||||||
|
cond = (r > rInner)*(r <= rGalaxy)
|
||||||
|
D['r'] = r[cond]
|
||||||
|
ne.evaluate('rho0*2/(Mpc*r) * arctan(sqrt( (rGalaxy/r)**2 -1 ))',
|
||||||
|
local_dict=D, out=Q[cond])
|
||||||
|
|
||||||
return Q,np.where(r<rInner)[0]
|
return Q,np.where(r<rInner)[0]
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user