This commit is contained in:
Guilhem Lavaux 2014-07-03 15:38:38 +02:00
commit d31d1245c2
4 changed files with 100 additions and 37 deletions

View File

@ -47,31 +47,7 @@ find_program(CYTHON cython)
find_package(Boost 1.53) find_package(Boost 1.53)
if (ENABLE_SHARP) include(${CMAKE_SOURCE_DIR}/external/external_build.cmake)
SET(SHARP_SOURCE ${CMAKE_SOURCE_DIR}/external/sharp)
SET(DEP_BUILD ${CMAKE_SOURCE_DIR}/external/sharp/auto)
ExternalProject_Add(sharp
SOURCE_DIR ${SHARP_SOURCE}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ${SHARP_SOURCE}/configure "CC=${CMAKE_C_COMPILER}" "CXX=${CMAKE_CXX_COMPILER}" --prefix=${DEP_BUILD}
BUILD_COMMAND ${CMAKE_MAKE_PROGRAM}
INSTALL_COMMAND echo "No install"
)
SET(CUTILS_LIBRARY ${DEP_BUILD}/lib/libc_utils.a)
SET(FFTPACK_LIBRARY ${DEP_BUILD}/lib/libfftpack.a)
SET(SHARP_LIBRARY ${DEP_BUILD}/lib/libsharp.a)
SET(SHARP_LIBRARIES ${SHARP_LIBRARY} ${FFTPACK_LIBRARY} ${CUTILS_LIBRARY})
SET(SHARP_INCLUDE_PATH ${DEP_BUILD}/include)
endif (ENABLE_SHARP)
SET(OMPTL_BUILD_DIR ${CMAKE_BINARY_DIR}/omptl-prefix/src/omptl)
ExternalProject_Add(omptl
URL ${CMAKE_SOURCE_DIR}/external/omptl-20120422.tar.bz2
CONFIGURE_COMMAND echo "No configure"
BUILD_COMMAND echo "No build"
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy_directory ${OMPTL_BUILD_DIR} ${CMAKE_BINARY_DIR}/external/stage/include/omptl
)
include_directories(${OMPTL_BUILD_DIR}/..)
set(HDF5_FIND_COMPONENTS HL CXX) set(HDF5_FIND_COMPONENTS HL CXX)
if(HDF5_ROOTDIR) if(HDF5_ROOTDIR)

29
external/external_build.cmake vendored Normal file
View File

@ -0,0 +1,29 @@
if (ENABLE_SHARP)
SET(SHARP_SOURCE ${CMAKE_SOURCE_DIR}/external/sharp)
SET(DEP_BUILD ${CMAKE_SOURCE_DIR}/external/sharp/auto)
ExternalProject_Add(sharp
SOURCE_DIR ${SHARP_SOURCE}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ${SHARP_SOURCE}/configure "CC=${CMAKE_C_COMPILER}" "CXX=${CMAKE_CXX_COMPILER}" --prefix=${DEP_BUILD}
BUILD_COMMAND ${CMAKE_MAKE_PROGRAM}
INSTALL_COMMAND echo "No install"
)
SET(CUTILS_LIBRARY ${DEP_BUILD}/lib/libc_utils.a)
SET(FFTPACK_LIBRARY ${DEP_BUILD}/lib/libfftpack.a)
SET(SHARP_LIBRARY ${DEP_BUILD}/lib/libsharp.a)
SET(SHARP_LIBRARIES ${SHARP_LIBRARY} ${FFTPACK_LIBRARY} ${CUTILS_LIBRARY})
SET(SHARP_INCLUDE_PATH ${DEP_BUILD}/include)
endif (ENABLE_SHARP)
SET(OMPTL_BUILD_DIR ${CMAKE_BINARY_DIR}/omptl-prefix/src/omptl)
ExternalProject_Add(omptl
URL ${CMAKE_SOURCE_DIR}/external/omptl-20120422.tar.bz2
CONFIGURE_COMMAND echo "No configure"
BUILD_COMMAND echo "No build"
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy_directory ${OMPTL_BUILD_DIR} ${CMAKE_BINARY_DIR}/external/stage/include/omptl
)
include_directories(${OMPTL_BUILD_DIR}/..)

View File

@ -7,7 +7,7 @@ import borgadaptor as ba
def gen_posgrid(N, L): def gen_posgrid(N, L):
""" Generate an ordered lagrangian grid""" """ Generate an ordered lagrangian grid"""
ix = np.arange(N)*L/N ix = (np.arange(N)*L/N).astype(np.float32)
x = ix[:,None,None].repeat(N, axis=1).repeat(N, axis=2) x = ix[:,None,None].repeat(N, axis=1).repeat(N, axis=2)
y = ix[None,:,None].repeat(N, axis=0).repeat(N, axis=2) y = ix[None,:,None].repeat(N, axis=0).repeat(N, axis=2)
@ -95,7 +95,9 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, do_lpt2=True,
print("velmul=%lg" % (cosmo['h']*velmul)) print("velmul=%lg" % (cosmo['h']*velmul))
density = cgrowth.D(1)/cgrowth.D(a_borg)*np.fft.irfftn(lpt.dhat)*(supersample*N/L)**3 lpt.cube.dhat = lpt.dhat
density = lpt.cube.irfft()
density *= (cgrowth.D(1)/cgrowth.D(a_borg))
return posx,vel,density,N*supersample,L,a_ic,cosmo return posx,vel,density,N*supersample,L,a_ic,cosmo
@ -117,7 +119,9 @@ def whitify(density, L, cosmo, supergenerate=1, func='HU_WIGGLES'):
Pk = build_Pk() Pk = build_Pk()
Pk[0,0,0]=1 Pk[0,0,0]=1
density_hat = np.fft.rfftn(density)*(L/N)**3 cube = CubeFT(N, L)
cube.density = density
density_hat = cube.rfft()
density_hat /= np.sqrt(Pk) density_hat /= np.sqrt(Pk)
Ns = N*supergenerate Ns = N*supergenerate
@ -152,6 +156,8 @@ def whitify(density, L, cosmo, supergenerate=1, func='HU_WIGGLES'):
print np.where(np.isnan(density_hat_super))[0].size print np.where(np.isnan(density_hat_super))[0].size
cube = CubeFT(Ns, L)
cube.dhat = density_hat_super
return np.fft.irfftn(density_hat_super)*Ns**1.5 return np.fft.irfftn(density_hat_super)*Ns**1.5

View File

@ -1,7 +1,40 @@
import multiprocessing
import pyfftw
import weakref import weakref
import numpy as np import numpy as np
import cosmolopy as cpy import cosmolopy as cpy
class CubeFT(object):
def __init__(self, L, N, max_cpu=-1):
self.N = N
self.align = pyfftw.simd_alignment
self.L = L
self.max_cpu = multiprocessing.cpu_count() if max_cpu < 0 else max_cpu
self._dhat = pyfftw.n_byte_align_empty((self.N,self.N,self.N/2+1), self.align, dtype='complex64')
self._density = pyfftw.n_byte_align_empty((self.N,self.N,self.N), self.align, dtype='float32')
self.irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False)
self.rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False)
def rfft(self):
return self.rfft()*(self.L/self.N)**3
def irfft(self):
return self.irfft()/self.L**3
def get_dhat(self):
return self._dhat
def set_dhat(self, in_dhat):
self._dhat[:] = in_dhat
dhat = property(get_dhat, set_dhat, None)
def get_density(self):
return self._density
def set_density(self, d):
self._density[:] = d
density = property(get_density, set_density, None)
class CosmoGrowth(object): class CosmoGrowth(object):
def __init__(self, **cosmo): def __init__(self, **cosmo):
@ -42,11 +75,20 @@ class CosmoGrowth(object):
class LagrangianPerturbation(object): class LagrangianPerturbation(object):
def __init__(self,density,L, fourier=False, supersample=1): def __init__(self,density,L, fourier=False, supersample=1, max_cpu=-1):
self.L = L self.L = L
self.N = density.shape[0] self.N = density.shape[0]
self.dhat = np.fft.rfftn(density)*(L/self.N)**3 if not fourier else density
self.max_cpu = max_cpu
self.cube = CubeFT(self.L, self.N, max_cpu=max_cpu)
if not fourier:
self.cube.density = density
self.dhat = self.cube.rfft().copy()
else:
self.dhat = density.copy()
if supersample > 1: if supersample > 1:
self.upgrade_sampling(supersample) self.upgrade_sampling(supersample)
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
@ -65,9 +107,11 @@ class LagrangianPerturbation(object):
self.dhat = dhat_new self.dhat = dhat_new
self.N = N2 self.N = N2
self.cube = CubeFT(self.L, self.N, max_cpu=self.max_cpu)
def _gradient(self, phi, direction): def _gradient(self, phi, direction):
return np.fft.irfftn(self._kdir(direction)*1j*phi)*(self.N/self.L)**3 self.cube.dhat = self._kdir(direction)*1j*phi
return self.cube.irfft()
def lpt1(self, direction=0): def lpt1(self, direction=0):
k2 = self._get_k2() k2 = self._get_k2()
@ -95,6 +139,14 @@ class LagrangianPerturbation(object):
self.cache['k2'] = k2 self.cache['k2'] = k2
return k2 return k2
def _do_irfft(self, array):
self.cube.dhat = array
return self.cube.irfft()
def _do_rfft(self, array):
self.cube.density = array
return self.cube.rfft()
def lpt2(self, direction=0): def lpt2(self, direction=0):
k2 = self._get_k2() k2 = self._get_k2()
@ -104,14 +156,14 @@ class LagrangianPerturbation(object):
print("Rebuilding potential...") print("Rebuilding potential...")
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64) div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
for j in xrange(3): for j in xrange(3):
q = np.fft.irfftn( self._kdir(j)**2*self.dhat / k2 ) q = self._do_irfft( self._kdir(j)**2*self.dhat / k2 ).copy()
for i in xrange(j+1, 3): for i in xrange(j+1, 3):
div_phi2 += q * np.fft.irfftn( self._kdir(i)**2*self.dhat / k2 ) div_phi2 += q * self._do_irfft( self._kdir(i)**2*self.dhat / k2 )
div_phi2 -= (np.fft.irfftn( self._kdir(j)*self._kdir(i)*self.dhat / k2 ))**2 div_phi2 -= (self._do_irfft(self._kdir(j)*self._kdir(i)*self.dhat / k2 ) )**2
div_phi2 *= (self.N/self.L)**6 div_phi2 *= 1/self.L**6
phi2_hat = -np.fft.rfftn(div_phi2) * ((self.L/self.N)**3) / k2 phi2_hat = -self._do_rfft(div_phi2) / k2
self.cache['lpt2_potential'] = phi2_hat #self.cache['lpt2_potential'] = phi2_hat
del div_phi2 del div_phi2
else: else:
phi2_hat = self.cache['lpt2_potential'] phi2_hat = self.cache['lpt2_potential']