Fixed merge

This commit is contained in:
Guilhem Lavaux 2010-05-04 07:41:42 -05:00
commit d0363d131e
14 changed files with 792 additions and 16 deletions

View file

@ -1,5 +1,5 @@
SHLIBS= libCosmoTool.so
SOURCES= loadRamses.cpp yorick.cpp miniargs.cpp fortran.cpp interpolate.cpp load_data.cpp powerSpectrum.cpp octTree.cpp
SOURCES= loadRamses.cpp yorick.cpp miniargs.cpp fortran.cpp interpolate.cpp load_data.cpp powerSpectrum.cpp octTree.cpp loadGadget.cpp
LIBS= -lnetcdf_c++ -lnetcdf -lgsl -lgslcblas -lm
include config.mk
@ -8,7 +8,7 @@ VPATH=../src
all: $(SHLIBS)
libCosmoTool.so: loadRamses.o yorick.o miniargs.o fortran.o interpolate.o load_data.o powerSpectrum.o octTree.o
libCosmoTool.so: loadRamses.o yorick.o miniargs.o fortran.o interpolate.o load_data.o powerSpectrum.o octTree.o loadGadget.o
depend: $(SOURCES)
@echo "[DEPENDS] $^"

View file

@ -2,10 +2,12 @@
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <fstream>
#define __KD_TREE_NUMNODES
#include "mykdtree.hpp"
#define NTRY 3
#define ND 2
#define ND 3
using namespace std;
using namespace CosmoTool;
@ -61,6 +63,7 @@ int main()
cout << "Check consistency..." << endl;
MyCell **ngb = new MyCell *[12];
ofstream fngb("nearest.txt");
for (int k = 0; k < NTRY; k++) {
cout << "Seed = " << xc[k][0] << " " << xc[k][1] << " " << xc[k][2] << endl;
tree.getNearestNeighbours(xc[k], 12, ngb);
@ -70,9 +73,9 @@ int main()
double d2 = 0;
for (int l = 0; l < 3; l++)
d2 += ({double delta = xc[k][l] - ngb[i]->coord[l]; delta*delta;});
cout << ngb[i]->coord[0] << " " << ngb[i]->coord[1] << " " << ngb[i]->coord[2] << " " << sqrt(d2) << endl;
fngb << ngb[i]->coord[0] << " " << ngb[i]->coord[1] << " " << ngb[i]->coord[2] << " " << sqrt(d2) << endl;
}
}
return 0;
}

View file

@ -49,6 +49,25 @@ void UnformattedRead::setCheckpointSize(CheckpointSize cs)
cSize = cs;
}
void UnformattedRead::skip(int64_t off)
throw (InvalidUnformattedAccess)
{
if (checkPointAccum == 0 && checkPointRef == 0)
{
// We are not in a checked block
f->seekg(off, ios::cur);
return;
}
if (off < 0)
throw InvalidUnformattedAccess();
if ((checkPointAccum+off) > checkPointRef)
throw InvalidUnformattedAccess();
f->seekg(off, ios::cur);
checkPointAccum += off;
}
void UnformattedRead::beginCheckpoint()
throw (InvalidUnformattedAccess,EndOfFileException)
{
@ -65,11 +84,15 @@ void UnformattedRead::beginCheckpoint()
throw EndOfFileException();
}
void UnformattedRead::endCheckpoint()
void UnformattedRead::endCheckpoint(bool autodrop)
throw (InvalidUnformattedAccess)
{
if (checkPointRef != checkPointAccum)
throw InvalidUnformattedAccess();
{
if (!autodrop || checkPointAccum > checkPointRef)
throw InvalidUnformattedAccess();
f->seekg(checkPointRef-checkPointAccum, ios::cur);
}
int64_t oldCheckPoint = checkPointRef;

View file

@ -41,7 +41,7 @@ namespace CosmoTool
void beginCheckpoint()
throw (InvalidUnformattedAccess,EndOfFileException);
void endCheckpoint()
void endCheckpoint(bool autodrop = false)
throw (InvalidUnformattedAccess);
double readReal64()
@ -53,6 +53,9 @@ namespace CosmoTool
int64_t readInt64()
throw (InvalidUnformattedAccess);
void skip(int64_t off)
throw (InvalidUnformattedAccess);
protected:
bool swapOrdering;
CheckpointSize cSize;

View file

@ -1,5 +1,5 @@
#ifndef __MAK_INTERPOLATE_HPP
#define __MAK_INTERPOLATE_HPP
#ifndef __CTOOL_INTERPOLATE_HPP
#define __CTOOL_INTERPOLATE_HPP
#include "config.hpp"
#include <inttypes.h>
@ -26,6 +26,7 @@ namespace CosmoTool
uint32_t getNumPoints() const;
void fillWithXY(double *x, double *y) const;
double getMaxX() const;
double getXi(int i) const { return spline->x[i]; }
protected:
gsl_interp_accel *accel_interp;
gsl_spline *spline;

105
src/kdtree_leaf.hpp Normal file
View file

@ -0,0 +1,105 @@
#ifndef __LEAF_KDTREE_HPP
#define __LEAF_KDTREE_HPP
#include <cmath>
#include "config.hpp"
#include "bqueue.hpp"
namespace CosmoTool {
template<int N, typename CType = ComputePrecision>
struct KDLeafDef
{
typedef CType CoordType;
typedef float KDLeafCoordinates[N];
};
template<int N, typename ValType, typename CType = ComputePrecision>
struct KDLeafCell
{
bool active;
ValType val;
typename KDLeafDef<N,CType>::KDLeafCoordinates coord;
};
class NotEnoughCells: public Exception
{
public:
NotEnoughCells() : Exception() {}
~NotEnoughCells() throw () {}
};
template<int N, typename ValType, typename CType = ComputePrecision>
struct KDLeafTreeNode
{
bool leaf;
union {
KDLeafCell<N,ValType,CType> *value;
KDLeafTreeNode<N,ValType,CType> *children[2];
};
typename KDLeafDef<N,CType>::KDLeafCoordinates minBound, maxBound;
#ifdef __KDLEAF_TREE_NUMNODES
uint32_t numNodes;
#endif
};
template<int N, typename ValType, typename CType = ComputePrecision>
class KDLeafTree
{
public:
typedef typename KDLeafDef<N,CType>::CoordType CoordType;
typedef typename KDLeafDef<N>::KDLeafCoordinates coords;
typedef KDLeafCell<N,ValType,CType> Cell;
typedef KDLeafTreeNode<N,ValType,CType> Node;
KDLeafTree(Cell *cells, uint32_t Ncells);
~KDLeafTree();
Node *getRoot() { return root; }
void optimize();
Node *getAllNodes() { return nodes; }
uint32_t getNumNodes() const { return lastNode; }
uint32_t countActives() const;
CoordType computeDistance(const Cell *cell, const coords& x) const;
#ifdef __KDLEAF_TREE_NUMNODES
uint32_t getNumberInNode(const Node *n) const { return n->numNodes; }
#else
uint32_t getNumberInNode(const Node *n) const {
if (n == 0)
return 0;
return 1+getNumberInNode(n->children[0])+getNumberInNode(n->children[1]);
}
#endif
double countInRange(CType sLo, CType sHi, Node *root1 = 0, Node *root2 = 0) const;
protected:
Node *nodes;
uint32_t numNodes, numCells;
uint32_t lastNode;
Node *root;
Cell **sortingHelper;
Node *buildTree(Cell **cell0,
uint32_t NumCells,
uint32_t depth,
coords minBound,
coords maxBound);
double recursiveCountInRange(Node *na, Node *nb, CType sLo, CType sHi) const;
};
template<int N, typename T, typename CType>
uint32_t gatherActiveCells(KDLeafCell<N,T,CType> **cells, uint32_t numCells);
};
#include "kdtree_leaf.tcc"
#endif

308
src/kdtree_leaf.tcc Normal file
View file

@ -0,0 +1,308 @@
#include <cstring>
#include <algorithm>
#include <limits>
#include <iostream>
#include <cassert>
namespace CosmoTool {
template<int N, typename ValType, typename CType>
class CellCompare
{
public:
CellCompare(int k)
{
rank = k;
}
bool operator()(const KDLeafCell<N,ValType,CType> *a, const KDLeafCell<N,ValType,CType> *b) const
{
return (a->coord[rank] < b->coord[rank]);
}
protected:
int rank;
};
template<int N, typename ValType, typename CType>
KDLeafTree<N,ValType,CType>::~KDLeafTree()
{
}
template<int N, typename ValType, typename CType>
KDLeafTree<N,ValType,CType>::KDLeafTree(Cell *cells, uint32_t Ncells)
{
numNodes = Ncells*3;
numCells = Ncells;
nodes = new Node[numNodes];
sortingHelper = new Cell *[Ncells];
for (uint32_t i = 0; i < Ncells; i++)
sortingHelper[i] = &cells[i];
optimize();
}
template<int N, typename ValType, typename CType>
void KDLeafTree<N,ValType,CType>::optimize()
{
coords absoluteMin, absoluteMax;
std::cout << "Optimizing the tree..." << std::endl;
uint32_t activeCells = gatherActiveCells(sortingHelper, numCells);
std::cout << " number of active cells = " << activeCells << std::endl;
lastNode = 0;
for (int i = 0; i < N; i++)
{
absoluteMin[i] = std::numeric_limits<typeof (absoluteMin[0])>::max();
absoluteMax[i] = -std::numeric_limits<typeof (absoluteMax[0])>::max();
}
// Find min and max corner
for (uint32_t i = 0; i < activeCells; i++)
{
KDLeafCell<N,ValType,CType> *cell = sortingHelper[i];
for (int k = 0; k < N; k++) {
if (cell->coord[k] < absoluteMin[k])
absoluteMin[k] = cell->coord[k];
if (cell->coord[k] > absoluteMax[k])
absoluteMax[k] = cell->coord[k];
}
}
std::cout << " rebuilding the tree..." << std::endl;
root = buildTree(sortingHelper, activeCells, 0, absoluteMin, absoluteMax);
std::cout << " done." << std::endl;
}
template<int N, typename ValType, typename CType>
uint32_t gatherActiveCells(KDLeafCell<N,ValType,CType> **cells,
uint32_t Ncells)
{
uint32_t swapId = Ncells-1;
uint32_t i = 0;
while (!cells[swapId]->active && swapId > 0)
swapId--;
while (i < swapId)
{
if (!cells[i]->active)
{
std::swap(cells[i], cells[swapId]);
while (!cells[swapId]->active && swapId > i)
{
swapId--;
}
}
i++;
}
return swapId+1;
}
template<int N, typename ValType, typename CType>
KDLeafTreeNode<N,ValType,CType> *
KDLeafTree<N,ValType,CType>::buildTree(Cell **cell0,
uint32_t Ncells,
uint32_t depth,
coords minBound,
coords maxBound)
{
if (Ncells == 0)
return 0;
int axis = depth % N;
assert(lastNode != numNodes);
Node *node = &nodes[lastNode++];
uint32_t mid = Ncells/2;
coords tmpBound;
// Isolate the environment
{
CellCompare<N,ValType,CType> compare(axis);
std::sort(cell0, cell0+Ncells, compare);
}
node->leaf = false;
memcpy(&node->minBound[0], &minBound[0], sizeof(coords));
memcpy(&node->maxBound[0], &maxBound[0], sizeof(coords));
if (Ncells == 1)
{
node->leaf = true;
node->value = *cell0;
#ifdef __KDLEAF_TREE_NUMNODES
node->numNodes = 1;
#endif
return node;
}
memcpy(tmpBound, maxBound, sizeof(coords));
tmpBound[axis] = (*(cell0+mid))->coord[axis];
depth++;
node->children[0] = buildTree(cell0, mid, depth, minBound, tmpBound);
memcpy(tmpBound, minBound, sizeof(coords));
tmpBound[axis] = (*(cell0+mid))->coord[axis];
node->children[1] = buildTree(cell0+mid, Ncells-mid, depth,
tmpBound, maxBound);
#ifdef __KDLEAF_TREE_NUMNODES
node->numNodes = (node->children[0] != 0) ? node->children[0]->numNodes : 0;
node->numNodes += (node->children[1] != 0) ? node->children[1]->numNodes : 0;
#endif
return node;
}
template<int N, typename ValType, typename CType>
uint32_t KDLeafTree<N,ValType,CType>::countActives() const
{
uint32_t numActive = 0;
for (uint32_t i = 0; i < lastNode; i++)
{
if (nodes[i].value->active)
numActive++;
}
return numActive;
}
template<int N, typename ValType, typename CType>
typename KDLeafDef<N,CType>::CoordType
KDLeafTree<N,ValType,CType>::computeDistance(const Cell *cell, const coords& x) const
{
CoordType d2 = 0;
for (int i = 0; i < N; i++)
{
CoordType delta = cell->coord[i] - x[i];
d2 += delta*delta;
}
return d2;
}
template<int N, typename ValType, typename CType>
double KDLeafTree<N,ValType,CType>::countInRange(CType sLo, CType sHigh, Node *root1, Node *root2) const
{
double result = recursiveCountInRange((root1 == 0) ? root : root1,
(root2 == 0) ? root : root2,
sLo*sLo, sHigh*sHigh);
return result;
}
template<int N, typename ValType, typename CType>
double KDLeafTree<N,ValType,CType>::recursiveCountInRange(Node *na, Node *nb,
CType sLo, CType sHi) const
{
assert(nb != 0);
if (na == 0)
{
return 0;
}
uint32_t numNa = getNumberInNode(na);
uint32_t numNb = getNumberInNode(nb);
double Cleft, Cright;
CType minDist, maxDist;
if (numNa == 1 && numNb == 1)
{
assert(na->leaf && nb->leaf);
CType ab_dist = computeDistance(na->value, nb->value->coord);
if (ab_dist >= sLo && ab_dist < sHi)
return 1;
else
return 0;
}
assert(numNa > 1 || numNb > 1);
bool overlapping_a = true, overlapping_b = true;
for (int k = 0; k < N; k++)
{
bool min_a_in_B =
((na->minBound[k] >= nb->minBound[k] &&
na->minBound[k] <= nb->maxBound[k]));
bool max_a_in_B =
((na->maxBound[k] >= nb->minBound[k] &&
na->maxBound[k] <= nb->maxBound[k]));
bool min_b_in_A =
((nb->minBound[k] >= na->minBound[k] &&
nb->minBound[k] <= na->maxBound[k]));
bool max_b_in_A =
((nb->maxBound[k] >= na->minBound[k] &&
nb->maxBound[k] <= na->maxBound[k]));
if (!min_a_in_B && !max_a_in_B)
overlapping_a = false;
if (!min_b_in_A && !max_b_in_A)
overlapping_b = false;
}
if (overlapping_a || overlapping_b)
{
minDist = 0;
maxDist = 0;
for (int k = 0; k < N; k++)
{
CType delta = max(nb->maxBound[k]-na->minBound[k],na->maxBound[k]-nb->minBound[k]);
maxDist += delta*delta;
}
}
else
{
minDist = maxDist = 0;
for (int k = 0; k < N; k++)
{
CType delta2;
delta2 = max(nb->maxBound[k]-na->minBound[k],
na->maxBound[k]-nb->minBound[k]);
maxDist += delta2*delta2;
}
// mins and maxs
CType minmax[N][2];
for (int k = 0; k < N; k++)
{
if (na->minBound[k] < nb->minBound[k])
{
minmax[k][1] = na->maxBound[k];
minmax[k][0] = nb->minBound[k];
}
else
{
minmax[k][1] = nb->maxBound[k];
minmax[k][0] = na->minBound[k];
}
}
for (int k = 0; k < N; k++)
{
CType delta = max(minmax[k][0]-minmax[k][1], 0.);
minDist += delta*delta;
}
}
if (minDist >= sHi)
return 0;
if (maxDist < sLo)
return 0;
if (sLo <= minDist && maxDist < sHi)
return ((double)numNa)*numNb;
if (numNa < numNb)
{
assert(!nb->leaf);
Cleft = recursiveCountInRange(nb->children[0], na, sLo, sHi);
Cright = recursiveCountInRange(nb->children[1], na, sLo, sHi);
}
else
{
assert(!na->leaf);
Cleft = recursiveCountInRange(na->children[0], nb, sLo, sHi);
Cright = recursiveCountInRange(na->children[1], nb, sLo, sHi);
}
return Cleft+Cright;
}
};

217
src/loadGadget.cpp Normal file
View file

@ -0,0 +1,217 @@
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "load_data.hpp"
#include "loadGadget.hpp"
#include "fortran.hpp"
using namespace CosmoTool;
PurePositionData *CosmoTool::loadGadgetPosition(const char *fname)
{
PurePositionData *data;
int p, n;
UnformattedRead f(fname);
GadgetHeader h;
data = new PurePositionData;
f.beginCheckpoint();
for (int i = 0; i < 6; i++)
h.npart[i] = f.readInt32();
for (int i = 0; i < 6; i++)
h.mass[i] = f.readReal64();
h.time = f.readReal64();
h.redshift = f.readReal64();
h.flag_sfr = f.readInt32();
h.flag_feedback = f.readInt32();
for (int i = 0; i < 6; i++)
h.npartTotal[i] = f.readInt32();
h.flag_cooling = f.readInt32();
h.num_files = f.readInt32();
h.BoxSize = f.readReal64();
h.Omega0 = f.readReal64();
h.OmegaLambda = f.readReal64();
h.HubbleParam = f.readReal64();
f.endCheckpoint(true);
data->NumPart = 0;
for(int k=0; k<5; k++)
data->NumPart += h.npart[k];
data->pos = new FCoordinates[data->NumPart];
f.beginCheckpoint();
for(int k = 0, p = 0; k < 5; k++) {
for(int n = 0; n < h.npart[k]; n++) {
data->pos[p][0] = f.readReal32();
data->pos[p][1] = f.readReal32();
data->pos[p][2] = f.readReal32();
p++;
}
}
f.endCheckpoint();
// Skip velocities
f.skip((long)data->NumPart*3+2*4);
// Skip ids
return data;
}
SimuData *CosmoTool::loadGadgetMulti(const char *fname, int id, int loadflags)
{
SimuData *data;
int p, n;
UnformattedRead *f;
GadgetHeader h;
if (id >= 0) {
int numDigits = 1;
int mul = 1;
while (mul < id)
{
mul *= 10;
numDigits++;
}
size_t len = numDigits+2+strlen(fname);
char *out_fname = new char[numDigits+2+strlen(fname)];
if (snprintf(out_fname, len, "%s.%d", fname, id) != len)
abort();
f = new UnformattedRead(out_fname);
if (f == 0)
return 0;
delete out_fname;
} else {
f = new UnformattedRead(fname);
if (f == 0)
return 0;
}
data = new SimuData;
if (data == 0) {
delete f;
return 0;
}
f->beginCheckpoint();
for (int i = 0; i < 6; i++)
h.npart[i] = f->readInt32();
for (int i = 0; i < 6; i++)
h.mass[i] = f->readReal64();
h.time = f->readReal64();
h.redshift = f->readReal64();
h.flag_sfr = f->readInt32();
h.flag_feedback = f->readInt32();
for (int i = 0; i < 6; i++)
h.npartTotal[i] = f->readInt32();
h.flag_cooling = f->readInt32();
h.num_files = f->readInt32();
data->BoxSize = h.BoxSize = f->readReal64();
h.Omega0 = f->readReal64();
h.OmegaLambda = f->readReal64();
h.HubbleParam = f->readReal64();
f->endCheckpoint(true);
long NumPart = 0, NumPartTotal = 0;
for(int k=0; k<5; k++)
{
NumPart += h.npart[k];
NumPartTotal += h.npartTotal[k];
}
data->NumPart = NumPart;
data->TotalNumPart = NumPartTotal;
if (loadflags & NEED_POSITION) {
for (int i = 0; i < 3; i++) {
data->Pos[i] = new float[data->NumPart];
if (data->Pos[i] == 0) {
delete data;
return 0;
}
}
f->beginCheckpoint();
for(int k = 0, p = 0; k < 5; k++) {
for(int n = 0; n < h.npart[k]; n++) {
data->Pos[p][0] = f->readReal32();
data->Pos[p][1] = f->readReal32();
data->Pos[p][2] = f->readReal32();
p++;
}
}
f->endCheckpoint();
} else {
// Skip positions
f->skip(NumPart * 3 * sizeof(float) + 2*4);
}
if (loadflags & NEED_VELOCITY) {
for (int i = 0; i < 3; i++)
{
data->Vel[i] = new float[data->NumPart];
if (data->Vel[i] == 0)
{
delete data;
return 0;
}
}
f->beginCheckpoint();
for(int k = 0, p = 0; k < 5; k++) {
for(int n = 0; n < h.npart[k]; n++) {
data->Vel[p][0] = f->readReal32();
data->Vel[p][1] = f->readReal32();
data->Vel[p][2] = f->readReal32();
p++;
}
}
f->endCheckpoint();
// TODO: FIX THE UNITS OF THESE FUNKY VELOCITIES !!!
} else {
// Skip velocities
f->skip(NumPart*3*sizeof(float)+2*4);
}
// Skip ids
if (loadflags & NEED_GADGET_ID) {
f->beginCheckpoint();
data->Id = new int[data->NumPart];
if (data->Id == 0)
{
delete data;
return 0;
}
for(int k = 0, p = 0; k < 6; k++)
{
for(int n = 0; n < h.npart[k]; n++)
{
data->Id[p] = f->readInt32();
p++;
}
}
f->endCheckpoint();
} else {
f->skip(2*4);
for (int k = 0; k < 6; k++)
f->skip(h.npart[k]*4);
}
delete f;
return data;
}

15
src/loadGadget.hpp Normal file
View file

@ -0,0 +1,15 @@
#ifndef __COSMO_LOAD_GADGET_HPP
#define __COSMO_LOAD_GADGET_HPP
#include "load_data.hpp"
#include "loadSimu.hpp"
namespace CosmoTool {
PurePositionData *loadGadgetPosition(const char *fname);
SimuData *loadGadgetMulti(const char *fname, int id, int flags);
};
#endif

41
src/loadSimu.hpp Normal file
View file

@ -0,0 +1,41 @@
#ifndef __COSMOTOOLBOX_HPP
#define __COSMOTOOLBOX_HPP
namespace CosmoTool
{
static const int NEED_GADGET_ID = 1;
static const int NEED_POSITION = 2;
static const int NEED_VELOCITY = 4;
class SimuData
{
public:
float BoxSize;
float time;
long NumPart;
long TotalNumPart;
int *Id;
float *Pos[3];
float *Vel[3];
public:
SimuData() : Id(0),NumPart(0) { Pos[0]=Pos[1]=Pos[2]=0; Vel[0]=Vel[1]=Vel[2]=0; }
~SimuData()
{
for (int j = 0; j < 3; j++)
{
if (Pos[j])
delete[] Pos[j];
if (Vel[j])
delete[] Vel[j];
}
if (Id)
delete[] Id;
}
};
};
#endif

View file

@ -35,6 +35,9 @@ namespace CosmoTool {
KDCell<N,ValType,CType> *value;
KDTreeNode<N,ValType,CType> *children[2];
typename KDDef<N,CType>::KDCoordinates minBound, maxBound;
#ifdef __KD_TREE_NUMNODES
uint32_t numNodes;
#endif
};
template<int N, typename ValType, typename CType = ComputePrecision>
@ -105,6 +108,17 @@ namespace CosmoTool {
uint32_t countActives() const;
#ifdef __KD_TREE_NUMNODES
uint32_t getNumberInNode(const Node *n) const { return n->numNodes; }
#else
uint32_t getNumberInNode(const Node *n) const {
if (n == 0)
return 0;
return 1+getNumberInNode(n->children[0])+getNumberInNode(n->children[1]);
}
#endif
protected:
Node *nodes;
uint32_t numNodes;
@ -124,7 +138,7 @@ namespace CosmoTool {
int level)
throw (NotEnoughCells);
CoordType computeDistance(Cell *cell, const coords& x);
CoordType computeDistance(const Cell *cell, const coords& x) const;
void recursiveNearest(Node *node,
int level,
const coords& x,
@ -132,6 +146,7 @@ namespace CosmoTool {
Cell*& cell);
void recursiveMultipleNearest(RecursionMultipleInfo<N,ValType,CType>& info, Node *node,
int level);
};
template<int N, typename T, typename CType>

View file

@ -2,6 +2,7 @@
#include <algorithm>
#include <limits>
#include <iostream>
#include <cassert>
namespace CosmoTool {
@ -53,8 +54,20 @@ namespace CosmoTool {
lastNode = 0;
for (int i = 0; i < N; i++)
{
absoluteMin[i] = -std::numeric_limits<typeof (absoluteMin[0])>::max();
absoluteMax[i] = std::numeric_limits<typeof (absoluteMax[0])>::max();
absoluteMin[i] = std::numeric_limits<typeof (absoluteMin[0])>::max();
absoluteMax[i] = -std::numeric_limits<typeof (absoluteMax[0])>::max();
}
// Find min and max corner
for (uint32_t i = 0; i < activeCells; i++)
{
KDCell<N,ValType,CType> *cell = sortingHelper[i];
for (int k = 0; k < N; k++) {
if (cell->coord[k] < absoluteMin[k])
absoluteMin[k] = cell->coord[k];
if (cell->coord[k] > absoluteMax[k])
absoluteMax[k] = cell->coord[k];
}
}
std::cout << " rebuilding the tree..." << std::endl;
@ -208,6 +221,12 @@ namespace CosmoTool {
node->children[1] = buildTree(cell0+mid+1, Ncells-mid-1, depth,
tmpBound, maxBound);
#ifdef __KD_TREE_NUMNODES
node->numNodes = (node->children[0] != 0) ? node->children[0]->numNodes : 0;
node->numNodes += (node->children[1] != 0) ? node->children[1]->numNodes : 0;
node->numNodes++;
#endif
return node;
}
@ -225,7 +244,7 @@ namespace CosmoTool {
template<int N, typename ValType, typename CType>
typename KDDef<N,CType>::CoordType
KDTree<N,ValType,CType>::computeDistance(Cell *cell, const coords& x)
KDTree<N,ValType,CType>::computeDistance(const Cell *cell, const coords& x) const
{
CoordType d2 = 0;
@ -410,4 +429,5 @@ namespace CosmoTool {
// std::cout << "Traversed = " << info.traversed << std::endl;
}
};

View file

@ -157,3 +157,4 @@ void OctTree::insertParticle(octPtr node,
particleId, maxAbsoluteDepth-1);
cells[node].children[octPos] = newNode;
}

View file

@ -29,7 +29,6 @@ namespace CosmoTool
class OctTree
{
public:
//Coordinates of particles must be in the [0:1] range
OctTree(const FCoordinates *particles, octPtr numParticles,
uint32_t maxTreeDepth, uint32_t maxAbsoluteDepth,
uint32_t threshold = 1);
@ -47,6 +46,11 @@ namespace CosmoTool
return cells[0].numberLeaves;
}
static bool unconditioned(const FCoordinates&, octPtr, float, bool)
{
return true;
}
template<typename FunT>
void walkTree(FunT f)
{
@ -61,6 +65,8 @@ namespace CosmoTool
walkTreeElements(f, condition, 0, rootCenter, octCoordCenter);
}
protected:
const FCoordinates *particles;
octPtr numParticles;
@ -72,6 +78,7 @@ namespace CosmoTool
float xMin[3];
<<<<<<< HEAD
static bool unconditioned()
{
return true;
@ -80,6 +87,10 @@ namespace CosmoTool
template<typename FunT, typename CondT>
void walkTreeElements(FunT f, CondT condition,
octPtr node,
=======
template<typename FunT,typename CondT>
void walkTreeElements(FunT f, CondT condition, octPtr node,
>>>>>>> 37b41b5ac9b32213b865cbeddd63102f3fa0935a
const OctCoords& icoord,
octCoordType halfNodeLength)
{
@ -91,16 +102,25 @@ namespace CosmoTool
center[j] = icoord[j]/(2.*octCoordCenter);
realCenter[j] = xMin[j] + center[j]*lenNorm;
}
f(realCenter, cells[node].numberLeaves, lenNorm*halfNodeLength/(float)octCoordCenter,
cells[node].children[0] == invalidOctCell, // True if this is a meta-node
false);
<<<<<<< HEAD
if (!condition(realCenter, cells[node].numberLeaves,
lenNorm*halfNodeLength/(float)octCoordCenter,
cells[node].children[0] == invalidOctCell))
return;
=======
if (!condition(realCenter, cells[node].numberLeaves,
lenNorm*halfNodeLength/(float)octCoordCenter,
cells[node].children[0] == invalidOctCell))
return;
>>>>>>> 37b41b5ac9b32213b865cbeddd63102f3fa0935a
for (int i = 0; i < 8; i++)
{
octPtr newNode = cells[node].children[i];
@ -125,8 +145,12 @@ namespace CosmoTool
false, true);
continue;
}
<<<<<<< HEAD
walkTreeElements(f, condition,
cells[node].children[i], newCoord, halfNodeLength/2);
=======
walkTreeElements(f, condition, cells[node].children[i], newCoord, halfNodeLength/2);
>>>>>>> 37b41b5ac9b32213b865cbeddd63102f3fa0935a
}
}