Merge branch 'master' of ssh://doucillon/tmp_mnt/netapp/users_home7/lavaux/git_root/CosmoToolbox

This commit is contained in:
Guilhem Lavaux 2009-08-26 11:56:17 -05:00
commit c09f426b7b
5 changed files with 612 additions and 0 deletions

90
src/dinterpolate.hpp Normal file
View file

@ -0,0 +1,90 @@
#ifndef __COSMO_DINTERPOLATE_HPP
#define __COSMO_DINTERPOLATE_HPP
#include "config.hpp"
#include "mykdtree.hpp"
#include <gsl/gsl_eigen.h>
namespace CosmoTool {
template<typename PType, typename IType, int N>
class DelaunayInterpolate {
public:
struct SimplexAccess {
int32_t *simplex_list;
};
typedef KDTree<N, SimplexAccess, PType> QuickTree;
typedef typename QuickTree::Cell QuickCell;
typedef PType CoordType[N];
QuickTree *quickAccess;
QuickCell *cells;
PType *all_preweight;
int32_t *point_to_simplex_list_base;
IType *values;
CoordType *positions;
uint32_t numPoints;
uint32_t numSimplex;
uint32_t *simplex_list;
gsl_eigen_symmv_workspace *eigen_work;
/**
* This construct the interpolator. The construction is time consuming so
* please do it the less possible number of times, especially if you have
* a large number of points.
*
* @param positions list of the positions
* @param values list of the values taken at each position
* @param simplex_list list of points for each simplex. The packing
* is the following:
* [t(0,1),t(0,2),...,t(0,n+1),t(1,0),t(1,1),...,t(1,n+1),..],
* with t(i,j) the i-th simplex and j-th point of the simplex. The indexes
* refer to the previous list of points.
* @param numPoints the number of points
*/
DelaunayInterpolate(CoordType *positions, IType *values, uint32_t *simplex_list,
uint32_t numPoints, uint32_t numSimplex)
throw (InvalidArgumentException)
{
this->positions = positions;
this->values = values;
this->simplex_list = simplex_list;
this->numPoints = numPoints;
this->numSimplex = numSimplex;
buildPreweight();
buildQuickAccess();
eigen_work = gsl_eigen_symmv_alloc(N);
}
~DelaunayInterpolate()
{
delete[] cells;
delete quickAccess;
delete[] point_to_simplex_list_base;
delete[] all_preweight;
gsl_eigen_symmv_free(eigen_work);
}
void buildPreweight()
throw (InvalidArgumentException);
void buildQuickAccess();
void buildHyperplane(const PType *v, CoordType& hyper);
bool checkPointInSimplex(const CoordType& pos, uint32_t simplex);
uint32_t findSimplex(const CoordType& pos)
throw (InvalidArgumentException);
IType computeValue(const CoordType& pos)
throw (InvalidArgumentException);
};
};
#include "dinterpolate.tcc"
#endif

294
src/dinterpolate.tcc Normal file
View file

@ -0,0 +1,294 @@
#include <cstdlib>
#include <cassert>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_linalg.h>
namespace CosmoTool {
template<typename PType, typename IType, int N>
void DelaunayInterpolate<PType,IType,N>::buildQuickAccess()
{
cells = new QuickCell[numPoints];
uint32_t point_to_simplex_size = 0;
uint32_t *numSimplex_by_point = new uint32_t[numPoints];
uint32_t *index_by_point = new uint32_t[numPoints];
// First count the number of simplex for each point
for (uint32_t i = 0; i < numPoints; i++)
index_by_point[i] = numSimplex_by_point[i] = 0;
for (uint32_t i = 0; i < (N+1)*numSimplex; i++)
numSimplex_by_point[simplex_list[i]]++;
// Compute the total number and the index for accessing lists.
for (uint32_t i = 0; i < numPoints; i++)
{
index_by_point[i] = point_to_simplex_size;
point_to_simplex_size += numSimplex_by_point[i]+1;
}
// Now compute the real list.
point_to_simplex_list_base = new int32_t[point_to_simplex_size];
for (uint32_t i = 0; i < numSimplex; i++)
{
for (int j = 0; j <= N; j++)
{
uint32_t p = simplex_list[(N+1)*i+j];
point_to_simplex_list_base[index_by_point[p]] = i;
++index_by_point[p];
}
}
// Finish the lists
for (uint32_t i = 0; i < numPoints; i++)
{
// check assertion
assert((i==0 && index_by_point[0]==numSimplex_by_point[0]) || ((index_by_point[i]-index_by_point[i-1]) == (numSimplex_by_point[i]+1)));
point_to_simplex_list_base[index_by_point[i]] = -1;
}
uint32_t idx = 0;
for (uint32_t i = 0; i < numPoints; i++)
{
cells[i].active = true;
cells[i].val.simplex_list = &point_to_simplex_list_base[idx];
// We may have to cast here.
for (int j = 0; j < N; j++)
cells[i].coord[j] = positions[i][j];
idx += numSimplex_by_point[i]+1;
}
// Free the memory allocated for temporary arrays.
delete[] numSimplex_by_point;
delete[] index_by_point;
// Build the kd tree now.
quickAccess = new QuickTree(cells, numPoints);
}
template<typename PType, typename IType, int N>
void DelaunayInterpolate<PType,IType,N>::buildPreweight()
throw(InvalidArgumentException)
{
double preweight[N*N];
double preweight_inverse[N*N];
gsl_permutation *p = gsl_permutation_alloc(N);
all_preweight = new PType[N*N*numSimplex];
for (uint32_t i = 0; i < numSimplex; i++)
{
uint32_t base = i*(N+1);
uint32_t pref = simplex_list[base];
// Compute the forward matrix first.
for (int j = 0; j < N; j++)
{
PType xref = positions[pref][j];
for (int k = 0; k < N; k++)
{
preweight[j*N + k] = positions[simplex_list[k+base+1]][j] - xref;
}
}
gsl_matrix_view M = gsl_matrix_view_array(preweight, N, N);
gsl_matrix_view iM = gsl_matrix_view_array(preweight_inverse, N, N);
int signum;
gsl_linalg_LU_decomp(&M.matrix, p, &signum);
if (fabs(gsl_linalg_LU_det(&M.matrix, signum)) < 1e-10)
throw InvalidArgumentException("Invalid tesselation. One simplex is coplanar.");
gsl_linalg_LU_invert(&M.matrix, p, &iM.matrix);
for (int j = 0; j < N*N; j++)
all_preweight[N*N*i + j] = preweight_inverse[j];
}
gsl_permutation_free(p);
}
template<typename PType, typename IType, int N>
void DelaunayInterpolate<PType,IType,N>::buildHyperplane(const PType *v, CoordType& hyper)
{
double M[N][N], eVal[N], eVec[N][N];
gsl_matrix_view mM, evec;
gsl_vector_view eval;
// Construct the symmetric matrix
for (int k = 0; k < N; k++)
for (int l = k; l < N; l++)
{
double val = 0;
for (int i = 0; i < (N-1); i++)
{
val += v[i*N+l] * v[i*N+k];
}
M[l][k] = M[k][l] = val;
}
mM = gsl_matrix_view_array(&M[0][0], N, N);
evec = gsl_matrix_view_array(&eVec[0][0], N, N);
eval = gsl_vector_view_array(&eVal[0], N);
// Solve the eigensystem
gsl_eigen_symmv (&mM.matrix, &eval.vector, &evec.matrix, eigen_work);
double minLambda = INFINITY;
uint32_t idx = N+1;
// Look for the smallest eigenvalue
for (int k = 0; k < N; k++)
{
if (minLambda > eVal[k])
{
minLambda = eVal[k];
idx = k;
}
}
assert(idx != (N+1));
// Copy the corresponding vector
for (int k = 0; k < N; k++)
{
hyper[k] = eVec[k][idx];
}
}
template<typename PType, typename IType, int N>
bool DelaunayInterpolate<PType,IType,N>::checkPointInSimplex(const CoordType& pos, uint32_t simplex)
{
uint32_t *desc_simplex = &simplex_list[simplex*(N+1)];
CoordType *p[N+1], v[N], hyper;
for (int k = 0; k <= N; k++)
p[k] = &positions[desc_simplex[k]];
for (int i = 0; i <= N; i++)
{
// Build vectors
for (int k = 1; k <= N; k++)
for (int l = 0; l < N; l++)
v[k-1][l] = (*p[k])[l] - (*p[0])[l];
// Build hyperplane.
buildHyperplane(&v[0][0], hyper);
// Compute the appropriate sign using the last point.
PType sign = 0;
for (int k = 0; k < N; k++)
sign += hyper[k] * v[N-1][k];
// Now check the point has the same sign;
PType pnt_sign = 0;
for (int k = 0; k < N; k++)
pnt_sign += hyper[k] * (pos[k] - (*p[0])[k]);
if (pnt_sign*sign < 0)
return false;
// Rotate the points.
for (int k = 1; k <= N; k++)
{
p[k-1] = p[k];
}
p[N] = &positions[desc_simplex[i]];
}
// We checked all possibilities. Return now.
return true;
}
template<typename PType, typename IType, int N>
uint32_t DelaunayInterpolate<PType,IType,N>::findSimplex(const CoordType& c)
throw (InvalidArgumentException)
{
uint32_t N_ngb = 1;
QuickCell **cell_Ngb = new QuickCell *[N_ngb];
typename QuickTree::coords kdc;
for (int i = 0; i < N; i++)
kdc[i] = c[i];
// It may happen that we are unlucky and have to iterate to farther
// neighbors. It should happen, especially on the boundaries.
do
{
uint32_t i;
quickAccess->getNearestNeighbours(kdc, N_ngb, cell_Ngb);
for (i = 0; i < N_ngb && cell_Ngb[i] != 0; i++)
{
int32_t *simplex_list = cell_Ngb[i]->val.simplex_list;
uint32_t j = 0;
while (simplex_list[j] >= 0)
{
if (checkPointInSimplex(c, simplex_list[j]))
{
delete[] cell_Ngb;
return simplex_list[j];
}
++j;
}
}
delete[] cell_Ngb;
// The point does not belong to any simplex.
if (i != N_ngb)
throw InvalidArgumentException("the given point does not belong to any simplex");
N_ngb *= 2;
cell_Ngb = new QuickCell *[N_ngb];
}
while (1);
// Point not reached.
abort();
return 0;
}
template<typename PType, typename IType, int N>
IType DelaunayInterpolate<PType,IType,N>::computeValue(const CoordType& c)
throw (InvalidArgumentException)
{
uint32_t simplex = findSimplex(c);
PType *preweight = &all_preweight[simplex*N*N];
PType weight[N+1];
PType p0[N];
PType sum_weight = 0;
for (int i = 0; i < N; i++)
p0[i] = positions[simplex_list[simplex*(N+1) + 0]][i];
// Now we use the preweight to compute the weight...
for (int i = 1; i <= N; i++)
{
weight[i] = 0;
for (int j = 0; j < N; j++)
weight[i] += preweight[(i-1)*N+j]*(c[j]-p0[j]);
assert(weight[i] > -1e-7);
assert(weight[i] < 1+1e-7);
sum_weight += weight[i];
}
weight[0] = 1-sum_weight;
assert(weight[0] > -1e-7);
assert(weight[0] < (1+1e-7));
// We compute the final value by weighing the value at the N+1
// points by the proper weight.
IType final = 0;
for (int i = 0; i <= N; i++)
final += weight[i] * values[ simplex_list[simplex*(N+1) + i] ];
return final;
}
};

83
src/field.hpp Normal file
View file

@ -0,0 +1,83 @@
#ifndef __COSMOTOOL_FIELD
#define __COSMOTOOL_FIELD
#include "config.hpp"
#include <iostream>
#include <cassert>
namespace CosmoTool {
template<typename BaseType>
struct ScalarField
{
BaseType value;
};
template<typename BaseType, int N>
struct VectorField
{
BaseType vec[N];
VectorField& operator=(const VectorField& a)
{
for (int i = 0; i < N; i++)
vec[i] = a.vec[i];
return *this;
}
VectorField()
{
for (int i = 0; i < N; i++)
vec[i] = 0;
}
VectorField(double a)
{
assert(a == 0);
for (int i = 0; i < N; i++)
vec[i] = 0;
}
};
template<typename BaseType, int N>
VectorField<BaseType,N> operator*(BaseType s, const VectorField<BaseType,N>& a)
{
VectorField<BaseType,N> v;
for (int i = 0; i < N; i++)
v.vec[i] = a.vec[i]*s;
return v;
}
template<typename BaseType, int N>
VectorField<BaseType,N> operator+(const VectorField<BaseType,N>& a, const VectorField<BaseType,N>& b)
{
VectorField<BaseType,N> v;
for (int i = 0; i < N; i++)
v.vec[i] = a.vec[i]+b.vec[i];
return v;
}
template<typename BaseType, int N>
VectorField<BaseType,N>& operator+=(VectorField<BaseType,N>& a, const VectorField<BaseType,N>& b)
{
for (int i = 0; i < N; i++)
a.vec[i]+=b.vec[i];
return a;
}
};
template<typename BaseType, int N>
std::ostream& operator<<(std::ostream& s, const CosmoTool::VectorField<BaseType,N>& a)
{
for (int i = 0; i < N; i++)
s << a.vec[i] << " " ;
return s;
}
#endif

40
src/fixArray.hpp Normal file
View file

@ -0,0 +1,40 @@
#ifndef __FIX_ARRAY_HPP
#define __FIX_ARRAY_HPP
namespace CosmoTool
{
template <typename T, unsigned int sz> class fixArray
{
private:
T d[sz];
public:
/*! Returns the size of the array. */
long size() const { return sz; }
/*! Returns a reference to element \a #n */
template<typename T2> T &operator[] (T2 n) {
return d[n];
}
/*! Returns a constant reference to element \a #n */
template<typename T2> const T &operator[] (T2 n) const {
return d[n];
}
template<typename T2> void importArray(T2 *indata) {
for (int i = 0; i < sz; i++)
d[i] = indata[i];
}
template<typename T2> void exportArray(T2 *outdata) {
for (int i = 0; i < sz; i++)
outdata[i] = d[i];
}
};
};
#endif

105
src/interpolate3d.hpp Normal file
View file

@ -0,0 +1,105 @@
#ifndef __COSMO_INTERPOLATE3D_HPP
#define __COSMO_INTERPOLATE3D_HPP
#include "config.hpp"
#include "field.hpp"
#include <cmath>
namespace CosmoTool
{
template<typename IType>
class GridSampler
{
public:
typedef IType result_type;
GridSampler(IType *array_, int Nx_, int Ny_, int Nz_, int stride_)
: array(array_), Nx(Nx_), Ny(Ny_), Nz(Nz_), stride(stride_)
{
}
~GridSampler()
{
}
IType& operator()(int x, int y, int z)
throw ()
{
while (x < 0)
x += Nx;
x %= Nx;
while (y < 0)
y += Ny;
y %= Ny;
while (z < 0)
z += Nz;
z %= Nz;
uint32_t idx = x + Nx * (y + Ny * z);
return array[idx*stride];
}
private:
IType *array;
int Nx, Ny, Nz, stride;
};
// IType is the quantity to interpolate,
template<typename SampledFunction, typename PosType = float>
class Interpolate3D
{
public:
typedef typename SampledFunction::result_type IType;
Interpolate3D(SampledFunction& f)
: sampler(f)
{
};
~Interpolate3D()
{
};
IType get(PosType x, PosType y, PosType z)
throw (InvalidArgumentException)
{
int ix = (int)std::floor(x);
int iy = (int)std::floor(y);
int iz = (int)std::floor(z);
PosType rx = x-ix;
PosType ry = y-iy;
PosType rz = z-iz;
IType v000 = sampler(ix,iy,iz);
IType v001 = sampler(ix,iy,iz+1);
IType v010 = sampler(ix,iy+1,iz);
IType v011 = sampler(ix,iy+1,iz+1);
IType v100 = sampler(ix+1,iy,iz);
IType v101 = sampler(ix+1,iy,iz+1);
IType v110 = sampler(ix+1,iy+1,iz);
IType v111 = sampler(ix+1,iy+1,iz+1);
return
((1-rx) * (1-ry) * (1-rz)) * v000 +
((1-rx) * (1-ry) * rz) * v001 +
((1-rx) * ry * (1-rz)) * v010 +
((1-rx) * ry * rz) * v011 +
( rx * (1-ry) * (1-rz)) * v100 +
( rx * (1-ry) * rz) * v101 +
( rx * ry * (1-rz)) * v110 +
( rx * ry * rz) * v111;
}
private:
SampledFunction& sampler;
int Nx, Ny, Nz;
};
};
#endif