Infrastructure for better spherical projection

This commit is contained in:
Guilhem Lavaux 2014-06-04 16:25:24 +02:00
parent 1693c222e1
commit be03931328
2 changed files with 151 additions and 36 deletions

View File

@ -9,6 +9,11 @@ DTYPE=np.float64
__all__=["project_cic","line_of_sight_projection","spherical_projection","DTYPE","interp3d","interp2d"] __all__=["project_cic","line_of_sight_projection","spherical_projection","DTYPE","interp3d","interp2d"]
cdef extern from "project_tools.hpp" namespace "":
DTYPE_t compute_projection(DTYPE_t *vertex_value, DTYPE_t *u, DTYPE_t *u0, DTYPE_t rho)
@cython.boundscheck(False) @cython.boundscheck(False)
@cython.cdivision(True) @cython.cdivision(True)
cdef DTYPE_t interp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y, cdef DTYPE_t interp3d_INTERNAL_periodic(DTYPE_t x, DTYPE_t y,
@ -520,49 +525,46 @@ cdef DTYPE_t cube_integral(DTYPE_t u[3], DTYPE_t u0[3], int r[1]):
return alpha_max return alpha_max
#cdef DTYPE_t cube_integral_trilin(DTYPE_t u[3], DTYPE_t u0[3], int r[1], DTYPE_t vertex_value[8]): @cython.boundscheck(False)
# cdef DTYPE_t alpha_max @cython.cdivision(True)
# cdef DTYPE_t tmp_a cdef DTYPE_t mysum(DTYPE_t *v, int q) nogil:
# cdef DTYPE_t v[3], term[4] cdef int i
# cdef int i, j, q cdef DTYPE_t s
# alpha_max = 10.0 # A big number s = 0
# j = 0 for i in xrange(q):
# for i in range(3): s += v[i]
# if u[i] == 0.: return s
# continue
# if u[i] < 0: @cython.boundscheck(False)
# tmp_a = -u0[i]/u[i] @cython.cdivision(True)
# else: cdef DTYPE_t cube_integral_trilin(DTYPE_t u[3], DTYPE_t u0[3], int r[1], DTYPE_t vertex_value[8]):
# tmp_a = (1-u0[i])/u[i] cdef DTYPE_t alpha_max
cdef DTYPE_t tmp_a
cdef DTYPE_t v[3], term[4]
cdef int i, j, q
# if tmp_a < alpha_max: alpha_max = 10.0 # A big number
# alpha_max = tmp_a
# j = i j = 0
for i in range(3):
if u[i] == 0.:
continue
if u[i] < 0:
tmp_a = -u0[i]/u[i]
else:
tmp_a = (1-u0[i])/u[i]
if tmp_a < alpha_max:
alpha_max = tmp_a
j = i
# alpha_max is the integration length # alpha_max is the integration length
# now we compute the integration of a trilinearly interpolated field # we integrate between 0 and alpha_max (curvilinear coordinates)
# There are four terms.
return compute_projection(vertex_value, u, u0, alpha_max)
# First term
# term[0]= (u0[0]*u0[1]*u0[2])*sum(vertex_value)
# Second term
# term[1] = 0
#
# for q in range(3):
# for r in range(8):
# pass
# for i in range(3):
# u0[i] += u[i]*alpha_max
# r[0] = j
# return 0#alpha_max
@cython.boundscheck(False) @cython.boundscheck(False)
def line_of_sight_projection(npx.ndarray[DTYPE_t, ndim=3] density, def line_of_sight_projection(npx.ndarray[DTYPE_t, ndim=3] density,

113
python/project_tool.hpp Normal file
View File

@ -0,0 +1,113 @@
// Only in 3d
template<typename T, typename ProdType>
static T project_tool(T *vertex_value, T *u, T *u0)
{
T ret0 = 0;
for (int i = 0; i < 8; i++)
{
int c[3] = { i & 1, (i>>1)&1, (i>>2)&1 };
int epsilon[3];
T ret = 0;
for (int q = 0; q < 3; q++)
epsilon[q] = 2*c[q] - 1;
for (int q = 0; q < ProdType::numProducts; q++)
ret += ProdType::product(u, u0, epsilon, q);
ret *= vertex_value[i];
ret0 += ret;
}
return ret0;
}
template<typename T>
struct ProductTerm0
{
static const int numProducts = 1;
static T product(T *u, T *u0, int *epsilon, int q)
{
T a = 1;
for (int r = 0; r < 3; r++)
a *= (epsilon[r] < 0) ? u0[r] : (1-u0[r]);
return a;
}
};
template<typename T>
struct ProductTerm1
{
static const int numProducts = 3;
static T product(T *u, T *u0, int *epsilon, int q)
{
T a = 1;
double G[3];
for (int r = 0; r < 3; r++)
{
G[r] = (epsilon[r] < 0) ? u0[r] : (1-u0[r]);
}
double F[3] = { G[0]*u[1]*u[2], u[0]*G[1]*u[2], u[0]*u[1]*G[2] };
return F[q] * epsilon[q];
}
};
template<typename T>
struct ProductTerm2
{
static const int numProducts = 3;
static T product(T *u, T *u0, int *epsilon, int q)
{
T a = 1;
double G[3];
for (int r = 0; r < 3; r++)
{
G[r] = (epsilon[r] < 0) ? u0[r] : (1-u0[r]);
}
double F[3] = { u[0]*G[1]*G[2], G[0]*u[1]*G[2], G[0]*G[1]*u[2] };
return F[q] * epsilon[q];
}
};
template<typename T>
struct ProductTerm3
{
static const int numProducts = 1;
static T product(T *u, T *u0, int *epsilon, int q)
{
T a = 1;
return epsilon[0]*epsilon[1]*epsilon[2];
}
};
template<typename T>
T compute_projection(T *vertex_value, T *u, T *u0, T rho)
{
T ret;
ret = project_tool<T, ProductTerm0<T> >(vertex_value, u, u0) * rho;
ret += project_tool<T, ProductTerm1<T> >(vertex_value, u, u0) * rho * rho / 2;
ret += project_tool<T, ProductTerm2<T> >(vertex_value, u, u0) * rho * rho * rho / 3;
ret += project_tool<T, ProductTerm3<T> >(vertex_value, u, u0) * rho * rho * rho * rho / 4;
return ret;
}
template
double compute_projection(double *vertex_value, double *u, double *u0, double rho);