Add and fix support for parallel SPH state

This commit is contained in:
Guilhem Lavaux 2022-11-15 09:02:11 +01:00
parent f03751907b
commit b538d4974d
2 changed files with 45 additions and 40 deletions

View file

@ -7,16 +7,16 @@ This software is a computer program whose purpose is to provide a toolbox for co
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
@ -25,9 +25,9 @@ that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
@ -69,13 +69,13 @@ namespace CosmoTool
int currentNgb;
ComputePrecision smoothRadius;
};
SPHSmooth(SPHTree *tree, uint32_t Nsph);
virtual ~SPHSmooth();
virtual ~SPHSmooth();
void fetchNeighbours(const typename SPHTree::coords& c, SPHState *state = 0);
void fetchNeighbours(const typename SPHTree::coords& c, uint32_t newNsph);
void fetchNeighboursOnVolume(const typename SPHTree::coords& c, ComputePrecision radius);
const typename SPHTree::coords& getCurrentCenter() const
@ -85,13 +85,13 @@ namespace CosmoTool
template<typename FuncT>
ComputePrecision computeSmoothedValue(const typename SPHTree::coords& c,
FuncT fun, SPHState *state = 0);
FuncT fun, SPHState *state = 0);
template<typename FuncT>
ComputePrecision computeInterpolatedValue(const typename SPHTree::coords& c,
FuncT fun, SPHState *state = 0);
ComputePrecision getMaxDistance(const typename SPHTree::coords& c,
ComputePrecision getMaxDistance(const typename SPHTree::coords& c,
SPHNode *node) const;
ComputePrecision getSmoothingLen() const
@ -108,11 +108,12 @@ namespace CosmoTool
template<typename FuncT>
void runForEachNeighbour(FuncT fun, SPHState *state = 0);
void addGridSite(const typename SPHTree::coords& c, SPHState *state);
void addGridSite(const typename SPHTree::coords& c);
bool hasNeighbours() const;
virtual ComputePrecision getKernel(ComputePrecision d) const;
virtual ComputePrecision getKernel(ComputePrecision d) const;
SPHTree *getTree() { return tree; }
@ -125,20 +126,20 @@ namespace CosmoTool
uint32_t getCurrent() const { return internal.currentNgb; }
uint32_t getNgb() const { return maxNgb; }
protected:
SPHState internal;
uint32_t Nsph;
uint32_t deltaNsph;
uint32_t maxNgb;
SPHTree *tree;
template<typename FuncT>
ComputePrecision computeWValue(const typename SPHTree::coords & c,
SPHCell& cell,
CoordType d,
FuncT fun, SPHState *state);
template<typename FuncT>
void runUnrollNode(SPHNode *node,
FuncT fun);

View file

@ -11,7 +11,7 @@ SPHSmooth<ValType,Ndims>::SPHSmooth(SPHTree *tree, uint32_t Nsph)
internal.currentNgb = 0;
this->maxNgb = Nsph;
internal.ngb = boost::shared_ptr<SPHCell *[]>(new SPHCell *[maxNgb]);
internal.ngb = boost::shared_ptr<SPHCell *[]>(new SPHCell *[maxNgb]);
internal.distances = boost::shared_ptr<CoordType[]>(new CoordType[maxNgb]);
}
@ -64,7 +64,7 @@ SPHSmooth<ValType,Ndims>::fetchNeighbours(const typename SPHTree::coords& c, uin
max_dist = d2;
}
internal.smoothRadius = max_dist / 2;
internal.smoothRadius = max_dist / 2;
}
template<typename ValType, int Ndims>
@ -78,20 +78,20 @@ void SPHSmooth<ValType,Ndims>::fetchNeighbours(const typename SPHTree::coords& c
state->ngb = boost::shared_ptr<SPHCell *[]>(new SPHCell *[Nsph]);
} else
state = &internal;
memcpy(state->currentCenter, c, sizeof(c));
tree->getNearestNeighbours(c, requested, state->ngb.get(), state->distances.get());
state->currentNgb = 0;
for (uint32_t i = 0; i < requested && state->ngb[i] != 0; i++,state->currentNgb++)
{
d2 = internal.distances[i] = sqrt(internal.distances[i]);
d2 = state->distances[i] = sqrt(state->distances[i]);
if (d2 > max_dist)
max_dist = d2;
}
state->smoothRadius = max_dist / 2;
state->smoothRadius = max_dist / 2;
}
@ -114,18 +114,18 @@ SPHSmooth<ValType,Ndims>::fetchNeighboursOnVolume(const typename SPHTree::coords
if (d2 > max_dist)
max_dist = d2;
}
internal.smoothRadius = max_dist / 2;
}
internal.smoothRadius = max_dist / 2;
}
template<typename ValType, int Ndims>
template<typename FuncT>
ComputePrecision
ComputePrecision
SPHSmooth<ValType,Ndims>::computeSmoothedValue(const typename SPHTree::coords& c,
FuncT fun, SPHState *state)
{
if (state == 0)
state = &internal;
ComputePrecision outputValue = 0;
ComputePrecision max_dist = 0;
ComputePrecision r3 = cube(state->smoothRadius);
@ -152,7 +152,7 @@ ComputePrecision SPHSmooth<ValType,Ndims>::computeInterpolatedValue(const typena
{
if (state == 0)
state = &internal;
ComputePrecision outputValue = 0;
ComputePrecision max_dist = 0;
ComputePrecision weight = 0;
@ -163,7 +163,7 @@ ComputePrecision SPHSmooth<ValType,Ndims>::computeInterpolatedValue(const typena
weight += computeWValue(c, *state->ngb[i], state->distances[i], interpolateOne);
}
return (outputValue == 0) ? 0 : (outputValue / weight);
return (outputValue == 0) ? 0 : (outputValue / weight);
}
template<typename ValType, int Ndims>
@ -172,34 +172,38 @@ void SPHSmooth<ValType,Ndims>::runForEachNeighbour(FuncT fun, SPHState *state)
{
if (state == 0)
state = &internal;
for (uint32_t i = 0; i < state->currentNgb; i++)
{
fun(state->ngb[i]);
}
}
template<typename ValType, int Ndims>
void SPHSmooth<ValType,Ndims>::addGridSite(const typename SPHTree::coords& c)
void SPHSmooth<ValType,Ndims>::addGridSite(const typename SPHTree::coords& c, SPHState *state)
{
ComputePrecision outputValue = 0;
ComputePrecision max_dist = 0;
ComputePrecision r3 = cube(internal.smoothRadius);
ComputePrecision r3 = cube(state->smoothRadius);
for (uint32_t i = 0; i < internal.currentNgb; i++)
for (uint32_t i = 0; i < state->currentNgb; i++)
{
ComputePrecision d = internal.distances[i];
SPHCell& cell = *(internal.ngb[i]);
double kernel_value = getKernel(d/internal.smoothRadius) / r3;
ComputePrecision d = state->distances[i];
SPHCell& cell = *(state->ngb[i]);
double kernel_value = getKernel(d/state->smoothRadius) / r3;
#pragma omp atomic
cell.val.weight += kernel_value;
}
}
template<typename ValType, int Ndims>
ComputePrecision
void SPHSmooth<ValType,Ndims>::addGridSite(const typename SPHTree::coords& c)
{
addGridSite(c, &internal);
}
template<typename ValType, int Ndims>
ComputePrecision
SPHSmooth<ValType,Ndims>::getKernel(ComputePrecision x) const
{
// WARNING !!! This is an unnormalized version of the kernel.