Include all the stupid tools required for BORG analysis and plotting

This commit is contained in:
Guilhem Lavaux 2014-06-18 08:55:52 +02:00
parent 81f4b642e4
commit a56eb021c4
8 changed files with 401 additions and 2 deletions

View file

@ -0,0 +1,111 @@
import healpy as hp
import numpy as np
import cosmotool as ct
import argparse
import h5py as h5
from matplotlib import pyplot as plt
Mpc=3.08e22
rhoc = 1.8864883524081933e-26 # m^(-3)
sigmaT = 6.6524e-29
mp = 1.6726e-27
lightspeed = 299792458.
v_unit = 1e3 # Unit of 1 km/s
T_cmb=2.725
h = 0.71
Y = 0.245 #The Helium abundance
Omega_matter = 0.26
Omega_baryon=0.0445
G=6.67e-11
MassSun=2e30
frac_electron = 1.0 # Hmmmm
frac_gas_galaxy = 0.14
mu = 1/(1-0.5*Y)
baryon_fraction = Omega_baryon / Omega_matter
ksz_normalization = T_cmb*sigmaT*v_unit/(lightspeed*mu*mp) * baryon_fraction
rho_mean_matter = Omega_matter * (3*(100e3/Mpc)**2/(8*np.pi*G))
parser=argparse.ArgumentParser(description="Generate Skymaps from CIC maps")
parser.add_argument('--boxsize', type=float, required=True)
parser.add_argument('--Nside', type=int, default=128)
parser.add_argument('--base_h5', type=str, required=True)
parser.add_argument('--base_fig', type=str, required=True)
parser.add_argument('--start', type=int, required=True)
parser.add_argument('--end', type=int, required=True)
parser.add_argument('--step', type=int, required=True)
parser.add_argument('--minval', type=float, default=-0.5)
parser.add_argument('--maxval', type=float, default=0.5)
parser.add_argument('--depth_min', type=float, default=10)
parser.add_argument('--depth_max', type=float, default=60)
parser.add_argument('--iid', type=int, default=0)
parser.add_argument('--ksz_map', type=str, required=True)
args = parser.parse_args()
L = args.boxsize
Nside = args.Nside
def build_sky_proj(density, dmax=60.,dmin=0,iid=0):
N = density.shape[0]
ix = (np.arange(N)-0.5)*L/N - 0.5 * L
dist2 = (ix[:,None,None]**2 + ix[None,:,None]**2 + ix[None,None,:]**2)
flux = density.transpose().astype(ct.DTYPE) # / dist2
dmax=N*dmax/L
dmin=N*dmin/L
if iid == 0:
shifter = np.array([0.5,0.5,0.5])
else:
shifter = np.array([0.,0.,0.])
projsky1 = ct.spherical_projection(Nside, flux, dmin, dmax, integrator_id=iid, shifter=shifter, progress=1)
return projsky1*L/N
def build_unit_vectors(N):
ii = np.arange(N)*L/N - 0.5*L
d = np.sqrt(ii[:,None,None]**2 + ii[None,:,None]**2 + ii[None,None,:]**2)
d[N/2,N/2,N/2] = 1
ux = ii[:,None,None] / d
uy = ii[None,:,None] / d
uz = ii[None,None,:] / d
return ux,uy,uz
for i in xrange(args.start,args.end,args.step):
ff=plt.figure(1)
plt.clf()
with h5.File(args.base_h5 % i, mode="r") as f:
p = f['velocity'][:]
davg = np.average(np.average(np.average(f['density'][:],axis=0),axis=0),axis=0)
p /= davg # Now we have momentum scaled to the mean density
# Rescale by Omega_b / Omega_m
p = p.astype(np.float64)
print p.max(), p.min(), ksz_normalization, rho_mean_matter
p *= ksz_normalization*rho_mean_matter
p *= 1e6 # Put it in uK
p *= -1 # ksz has a minus
ux,uy,uz = build_unit_vectors(p.shape[0])
pr = p[:,:,:,0] * ux + p[:,:,:,1] * uy + p[:,:,:,2] * uz
print p.max(), p.min()
print pr.max()*Mpc, pr.min()*Mpc
@ct.timeit_quiet
def run_proj():
return build_sky_proj(pr*Mpc, dmin=args.depth_min,dmax=args.depth_max,iid=args.iid)
proj = run_proj()
hp.write_map(args.ksz_map % i, proj)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval,
max=args.maxval)
ff.savefig(args.base_fig % i)

View file

@ -0,0 +1,68 @@
import healpy as hp
import numpy as np
import cosmotool as ct
import argparse
import h5py as h5
from matplotlib import pyplot as plt
parser=argparse.ArgumentParser(description="Generate Skymaps from CIC maps")
parser.add_argument('--boxsize', type=float, required=True)
parser.add_argument('--Nside', type=int, default=128)
parser.add_argument('--base_cic', type=str, required=True)
parser.add_argument('--base_fig', type=str, required=True)
parser.add_argument('--start', type=int, required=True)
parser.add_argument('--end', type=int, required=True)
parser.add_argument('--step', type=int, required=True)
parser.add_argument('--minval', type=float, default=0)
parser.add_argument('--maxval', type=float, default=60)
parser.add_argument('--depth_min', type=float, default=10)
parser.add_argument('--depth_max', type=float, default=60)
parser.add_argument('--iid', type=int, default=0)
args = parser.parse_args()
INDATA="/nethome/lavaux/Copy/PlusSimulation/BORG/Input_Data/2m++.npy"
tmpp = np.load(INDATA)
L = args.boxsize
Nside = args.Nside
def build_sky_proj(density, dmax=60.,dmin=0,iid=0):
N = density.shape[0]
ix = (np.arange(N)-0.5)*L/N - 0.5 * L
dist2 = (ix[:,None,None]**2 + ix[None,:,None]**2 + ix[None,None,:]**2)
flux = density.transpose().astype(ct.DTYPE) # / dist2
dmax=N*dmax/L
dmin=N*dmin/L
if iid == 0:
shifter = np.array([0.5,0.5,0.5])
else:
shifter = np.array([0.,0.,0.])
projsky1 = ct.spherical_projection(Nside, flux, dmin, dmax, integrator_id=iid, shifter=shifter)
return projsky1*L/N
l,b = tmpp['gal_long'],tmpp['gal_lat']
l = np.radians(l)
b = np.pi/2 - np.radians(b)
dcmb = tmpp['velcmb']/100.
idx = np.where((dcmb>args.depth_min)*(dcmb<args.depth_max))
for i in xrange(args.start,args.end,args.step):
ff=plt.figure(1)
plt.clf()
d = np.load(args.base_cic % i)
proj = build_sky_proj(1+d, dmin=args.depth_min,dmax=args.depth_max,iid=args.iid)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval, max=args.maxval)
hp.projscatter(b[idx], l[idx], lw=0, color='g', s=2.0, alpha=0.7)
ff.savefig(args.base_fig % i)

View file

@ -1 +0,0 @@
/nethome/lavaux/wuala/WualaDrive/g_lavaux/PythonCode/BORG/build_nbody_skymap.py

View file

@ -0,0 +1,58 @@
import healpy as hp
import numpy as np
import cosmotool as ct
import h5py as h5
from matplotlib import pyplot as plt
L=600.
Nside=128
INDATA="/nethome/lavaux/Copy/PlusSimulation/BORG/Input_Data/2m++.npy"
tmpp = np.load(INDATA)
def build_sky_proj(density, dmax=60.,dmin=0):
N = density.shape[0]
ix = (np.arange(N)-0.5)*L/N - 0.5 * L
dist2 = (ix[:,None,None]**2 + ix[None,:,None]**2 + ix[None,None,:]**2)
flux = density.transpose().astype(ct.DTYPE) # / dist2
dmax=N*dmax/L
dmin=N*dmin/L
projsky1 = ct.spherical_projection(Nside, flux, dmin, dmax, integrator_id=1)
# projsky0 = ct.spherical_projection(Nside, flux, 0, 52, integrator_id=0)
return projsky1*L/N#,projsky0
l,b = tmpp['gal_long'],tmpp['gal_lat']
l = np.radians(l)
b = np.pi/2 - np.radians(b)
dcmb = tmpp['velcmb']/100.
idx = np.where((dcmb>10)*(dcmb<60))
plt.figure(1)
plt.clf()
if True:
with h5.File("fields.h5", mode="r") as f:
d = f["density"][:].transpose()
d /= np.average(np.average(np.average(d,axis=0),axis=0),axis=0)
proj = build_sky_proj(d, dmin=10,dmax=60.)
proj0 = proj1 = proj
else:
d = np.load("icgen/dcic0.npy")
proj0 = build_sky_proj(1+d, dmin=10,dmax=60.)
d = np.load("icgen/dcic1.npy")
proj1 = build_sky_proj(1+d, dmin=10,dmax=60.)
hp.mollview(proj0, fig=1, coord='CG', max=60, cmap=plt.cm.coolwarm)
hp.projscatter(b[idx], l[idx], lw=0, color='g', s=5.0, alpha=0.8)
plt.figure(2)
plt.clf()
hp.mollview(proj1, fig=2, coord='CG', max=60, cmap=plt.cm.coolwarm)
hp.projscatter(b[idx], l[idx], lw=0, color='g', s=5.0, alpha=0.8)

View file

@ -0,0 +1,47 @@
import os
import h5py as h5
import numpy as np
import cosmotool as ct
import icgen as bic
import icgen.cosmogrowth as cg
import sys
import argparse
ADAPT_SMOOTH="/home/bergeron1NS/lavaux/Software/cosmotool/build/sample/simple3DFilter"
cosmo={'omega_M_0':0.3175, 'h':0.6711}
cosmo['omega_lambda_0']=1-cosmo['omega_M_0']
cosmo['omega_k_0'] = 0
cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624
N0=256
doSimulation=True
astart=1.
parser=argparse.ArgumentParser(description="Generate CIC density from 2LPT")
parser.add_argument('--start', type=int, required=True)
parser.add_argument('--end', type=int, required=True)
parser.add_argument('--step', type=int, required=True)
parser.add_argument('--base', type=str, required=True)
parser.add_argument('--N', type=int, default=256)
parser.add_argument('--output', type=str, default="fields_%d.h5")
parser.add_argument('--supersample', type=int, default=1)
args = parser.parse_args()
for i in xrange(args.start, args.end, args.step):
print i
pos,vel,density,N,L,_ = bic.run_generation("%s/initial_density_%d.dat" % (args.base,i), 0.001, astart,
cosmo, supersample=args.supersample, do_lpt2=True)
q = pos + vel
with h5.File("particles.h5", mode="w") as f:
f.create_dataset("particles", data=np.array(q).transpose())
os.system(ADAPT_SMOOTH + " %s %lg %lg %d %lg %lg %lg" % ("particles.h5", 3000000, L, args.N, 0, 0, 0))
os.rename("fields.h5", args.output % i)

View file

@ -0,0 +1,42 @@
import numpy as np
import cosmotool as ct
import icgen as bic
import icgen.cosmogrowth as cg
import sys
import argparse
cosmo={'omega_M_0':0.3175, 'h':0.6711}
cosmo['omega_lambda_0']=1-cosmo['omega_M_0']
cosmo['omega_k_0'] = 0
cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624
N0=256
doSimulation=True
astart=1.
parser=argparse.ArgumentParser(description="Generate CIC density from 2LPT")
parser.add_argument('--start', type=int, required=True)
parser.add_argument('--end', type=int, required=True)
parser.add_argument('--step', type=int, required=True)
parser.add_argument('--base', type=str, required=True)
parser.add_argument('--N', type=int, default=256)
parser.add_argument('--output', type=str, default="dcic_%d.npy")
parser.add_argument('--supersample', type=int, default=1)
args = parser.parse_args()
for i in xrange(args.start, args.end, args.step):
print i
# pos,_,density,N,L,_ = bic.run_generation("/nethome/lavaux/remote/borg_2m++_128/initial_density_%d.dat" % i, 0.001, astart, cosmo, supersample=2, do_lpt2=True)
pos,_,density,N,L,_ = bic.run_generation("%s/initial_density_%d.dat" % (args.base,i), 0.001, astart,
cosmo, supersample=args.supersample, do_lpt2=True)
dcic = ct.cicParticles(pos, L, args.N)
dcic /= np.average(np.average(np.average(dcic, axis=0), axis=0), axis=0)
dcic -= 1
np.save(args.output % i, dcic)

View file

@ -0,0 +1,41 @@
import numpy as np
import cosmotool as ct
import borgicgen as bic
from matplotlib import pyplot as plt
cosmo={'omega_M_0':0.3175, 'h':0.6711}
cosmo['omega_lambda_0']=1-cosmo['omega_M_0']
cosmo['omega_k_0'] = 0
cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
cosmo['ns']=0.9624
zstart=50
astart=1/(1.+zstart)
halfPixelShift=False
posx,vel,density,N,L,a_ic,cosmo = bic.run_generation("initial_condition_borg.dat", 0.001, astart, cosmo, supersample=1, shiftPixel=halfPixelShift, do_lpt2=False)
w1 = bic.whitify(density, L, cosmo, supergenerate=1)
w2 = bic.whitify(density, L, cosmo, supergenerate=2)
N = w1.shape[0]
Ns = w2.shape[0]
w1_hat = np.fft.rfftn(w1)*(L/N)**3
w2_hat = np.fft.rfftn(w2)*(L/Ns)**3
P1, b1, dev1 = bic.bin_power(np.abs(w1_hat)**2, L, range=(0,3),bins=150,dev=True)
P2, b2, dev2 = bic.bin_power(np.abs(w2_hat)**2, L, range=(0,3),bins=150,dev=True)
fig = plt.figure(1)
fig.clf()
plt.fill_between(b1, P1*(1-dev1), P1*(1+dev1), label='Supergen=1', color='b')
plt.fill_between(b2, P2*(1-dev2), P2*(1+dev2), label='Supergen=2', color='g', alpha=0.5)
ax = plt.gca()
ax.set_xscale('log')
plt.ylim(0.5,1.5)
plt.xlim(1e-2,4)
plt.axhline(1.0, color='red', lw=4.0)
plt.legend()
plt.show()

View file

@ -0,0 +1,14 @@
import numpy as np
import sys
import h5py as h5
import cosmotool as ct
s = ct.loadRamsesAll(sys.argv[1], int(sys.argv[2]), doublePrecision=True, loadVelocity=True)
q = [p for p in s.getPositions()]
q += [p for p in s.getVelocities()]
q = np.array(q)
with h5.File("particles.h5", mode="w") as f:
f.create_dataset("particles", data=q.transpose())

View file

@ -1 +0,0 @@
/nethome/lavaux/wuala/WualaDrive/g_lavaux/PythonCode/BORG/test_spheric_proj.py

View file

@ -0,0 +1,20 @@
import cosmotool as ct
import numpy as np
import healpy as hp
d = np.zeros((64,64,64), ct.DTYPE)
d[32,32,32] = 1
ii=np.arange(256)*64/256.-32
xx = ii[:,None,None].repeat(256,axis=1).repeat(256,axis=2).reshape(256**3)
yy = ii[None,:,None].repeat(256,axis=0).repeat(256,axis=2).reshape(256**3)
zz = ii[None,None,:].repeat(256,axis=0).repeat(256,axis=1).reshape(256**3)
d_high = ct.interp3d(xx, yy, zz, d, 64, periodic=True)
d_high = d_high.reshape((256,256,256))
proj0 = ct.spherical_projection(64, d, 0, 20, integrator_id=0, shifter=np.array([0.5,0.5,0.5]))
proj1 = ct.spherical_projection(64, d, 0, 20, integrator_id=1)
proj0_high = ct.spherical_projection(256, d_high, 0, 30, integrator_id=0, shifter=np.array([0.5,0.5,0.5]))