Fixed KDTree recursion and splitting technique
This commit is contained in:
parent
d4a14d7d85
commit
80951b4b52
@ -7,13 +7,14 @@
|
||||
#include "mykdtree.hpp"
|
||||
#include "kdtree_splitters.hpp"
|
||||
|
||||
#define NTRY 100
|
||||
#define NTRY 10
|
||||
#define ND 3
|
||||
|
||||
using namespace std;
|
||||
using namespace CosmoTool;
|
||||
|
||||
typedef KDTree<ND,char,ComputePrecision,KD_homogeneous_cell_splitter<ND, char> > MyTree;
|
||||
//typedef KDTree<ND,char,ComputePrecision > MyTree;
|
||||
typedef KDCell<ND,char> MyCell;
|
||||
|
||||
MyCell *findNearest(MyTree::coords& xc, MyCell *cells, uint32_t Ncells)
|
||||
@ -39,7 +40,7 @@ MyCell *findNearest(MyTree::coords& xc, MyCell *cells, uint32_t Ncells)
|
||||
|
||||
int main()
|
||||
{
|
||||
uint32_t Ncells = 100000;
|
||||
uint32_t Ncells = 10000000;
|
||||
MyCell *cells = new MyCell[Ncells];
|
||||
|
||||
for (int i = 0; i < Ncells; i++)
|
||||
@ -49,8 +50,16 @@ int main()
|
||||
cells[i].coord[l] = drand48();
|
||||
}
|
||||
|
||||
// Check timing
|
||||
clock_t startTimer = clock();
|
||||
MyTree tree(cells, Ncells);
|
||||
|
||||
clock_t endTimer = clock();
|
||||
|
||||
clock_t delta = endTimer-startTimer;
|
||||
double myTime = delta*1.0/CLOCKS_PER_SEC * 1.0;
|
||||
|
||||
cout << "KDTree build = " << myTime << " s" << endl;
|
||||
|
||||
MyTree::coords *xc = new MyTree::coords[NTRY];
|
||||
|
||||
cout << "Generating seeds..." << endl;
|
||||
@ -69,31 +78,39 @@ int main()
|
||||
for (int k = 0; k < NTRY; k++) {
|
||||
cout << "Seed = " << xc[k][0] << " " << xc[k][1] << " " << xc[k][2] << endl;
|
||||
tree.getNearestNeighbours(xc[k], 12, ngb, distances);
|
||||
int last = -1;
|
||||
|
||||
for (uint32_t i = 0; i < 12; i++)
|
||||
{
|
||||
if (ngb[i] == 0)
|
||||
continue;
|
||||
|
||||
last = i;
|
||||
|
||||
double d2 = 0;
|
||||
for (int l = 0; l < 3; l++)
|
||||
d2 += ({double delta = xc[k][l] - ngb[i]->coord[l]; delta*delta;});
|
||||
fngb << ngb[i]->coord[0] << " " << ngb[i]->coord[1] << " " << ngb[i]->coord[2] << " " << sqrt(d2) << endl;
|
||||
}
|
||||
fngb << endl << endl;
|
||||
double farther_dist = distances[11];
|
||||
fngb << endl << endl;
|
||||
double farther_dist = distances[last];
|
||||
for (uint32_t i = 0; i < Ncells; i++)
|
||||
{
|
||||
bool found = false;
|
||||
// If the points is not in the list, it means it is farther than the farther point
|
||||
for (int j =0; j < 12; j++)
|
||||
// If the points is not in the list, it means it is farther than the farthest point
|
||||
for (int j =0; j < 12; j++)
|
||||
{
|
||||
if (&cells[i] == ngb[j]) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
double dist_to_seed = 0;
|
||||
for (int l = 0; l < 3; l++)
|
||||
{ double delta = xc[k][l]-cells[i].coord[l];
|
||||
dist_to_seed += delta*delta; }
|
||||
double dist_to_seed = 0;
|
||||
for (int l = 0; l < 3; l++)
|
||||
{
|
||||
double delta = xc[k][l]-cells[i].coord[l];
|
||||
dist_to_seed += delta*delta;
|
||||
}
|
||||
if (!found)
|
||||
{
|
||||
if (dist_to_seed <= farther_dist)
|
||||
|
@ -12,56 +12,119 @@ namespace CosmoTool
|
||||
typedef typename KDDef<N,CType>::KDCoordinates coords;
|
||||
typedef typename KDDef<N,CType>::CoordType ctype;
|
||||
|
||||
|
||||
void check_splitting(KDCell<N,ValType,CType> **cells, uint32_t Ncells, int axis, uint32_t split_index, ctype midCoord)
|
||||
{
|
||||
ctype delta = std::numeric_limits<ctype>::max();
|
||||
assert(split_index < Ncells);
|
||||
assert(axis < N);
|
||||
for (uint32_t i = 0; i < split_index; i++)
|
||||
{
|
||||
assert(cells[i]->coord[axis] <= midCoord);
|
||||
delta = min(midCoord-cells[i]->coord[axis], delta);
|
||||
}
|
||||
for (uint32_t i = split_index+1; i < Ncells; i++)
|
||||
{
|
||||
assert(cells[i]->coord[axis] > midCoord);
|
||||
delta = min(cells[i]->coord[axis]-midCoord, delta);
|
||||
}
|
||||
assert(delta >= 0);
|
||||
assert (std::abs(cells[split_index]->coord[axis]-midCoord) <= delta);
|
||||
}
|
||||
|
||||
void operator()(KDCell<N,ValType,CType> **cells, uint32_t Ncells, uint32_t& split_index, int axis, coords minBound, coords maxBound)
|
||||
{
|
||||
if (Ncells == 1)
|
||||
{
|
||||
split_index = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
ctype midCoord = 0.5*(maxBound[axis]+minBound[axis]);
|
||||
uint32_t below = 0, above = Ncells-1;
|
||||
ctype delta_max = std::abs(cells[0]->coord[axis]-midCoord);
|
||||
uint32_t idx_max = 0;
|
||||
ctype delta_min = std::numeric_limits<ctype>::max();
|
||||
uint32_t idx_min = std::numeric_limits<uint32_t>::max();
|
||||
|
||||
while (below < above)
|
||||
{
|
||||
ctype delta = cells[below]->coord[axis]-midCoord;
|
||||
if (delta > 0)
|
||||
{
|
||||
if (delta < delta_max)
|
||||
if (delta < delta_min)
|
||||
{
|
||||
delta_max = delta;
|
||||
idx_max = above;
|
||||
delta_min = delta;
|
||||
idx_min = above;
|
||||
}
|
||||
std::swap(cells[below], cells[above--]);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (-delta < delta_max)
|
||||
if (-delta < delta_min)
|
||||
{
|
||||
delta_max = -delta;
|
||||
idx_max = below;
|
||||
delta_min = -delta;
|
||||
idx_min = below;
|
||||
}
|
||||
below++;
|
||||
}
|
||||
}
|
||||
if (idx_max != above)
|
||||
// Last iteration
|
||||
{
|
||||
ctype delta = cells[below]->coord[axis]-midCoord;
|
||||
if (delta > 0)
|
||||
{
|
||||
if (delta < delta_min)
|
||||
{
|
||||
delta_min = delta;
|
||||
idx_min = above;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (-delta < delta_min)
|
||||
{
|
||||
delta_min = -delta;
|
||||
idx_min = above;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (idx_min != above)
|
||||
{
|
||||
bool cond1 = cells[idx_max]->coord[axis] > midCoord;
|
||||
bool cond1 = cells[idx_min]->coord[axis] > midCoord;
|
||||
bool cond2 = cells[above]->coord[axis] > midCoord;
|
||||
if ((cond1 && cond2) || (!cond1 && !cond2))
|
||||
{
|
||||
split_index = above;
|
||||
std::swap(cells[above], cells[idx_max]);
|
||||
std::swap(cells[above], cells[idx_min]);
|
||||
}
|
||||
else if (cond2)
|
||||
{
|
||||
split_index = above-1;
|
||||
std::swap(cells[above-1], cells[idx_max]);
|
||||
if (above >= 1)
|
||||
{
|
||||
split_index = above-1;
|
||||
std::swap(cells[above-1], cells[idx_min]);
|
||||
}
|
||||
else
|
||||
split_index = 0;
|
||||
assert(split_index >= 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
split_index = above+1;
|
||||
std::swap(cells[above+1], cells[idx_max]);
|
||||
if (above+1 < Ncells)
|
||||
{
|
||||
split_index = above+1;
|
||||
std::swap(cells[above+1], cells[idx_min]);
|
||||
}
|
||||
else
|
||||
split_index = Ncells-1;
|
||||
|
||||
assert(split_index < Ncells);
|
||||
}
|
||||
}
|
||||
else split_index = above;
|
||||
|
||||
|
||||
// check_splitting(cells, Ncells, axis, split_index, midCoord);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -390,11 +390,11 @@ namespace CosmoTool {
|
||||
// If not it is in 1.
|
||||
go = node->children[1];
|
||||
other = node->children[0];
|
||||
if (go == 0)
|
||||
{
|
||||
go = other;
|
||||
other = 0;
|
||||
}
|
||||
// if (go == 0)
|
||||
// {
|
||||
// go = other;
|
||||
//other = 0;
|
||||
//}
|
||||
}
|
||||
|
||||
if (go != 0)
|
||||
@ -407,8 +407,8 @@ namespace CosmoTool {
|
||||
computeDistance(node->value, info.x);
|
||||
info.queue.push(node->value, thisR2);
|
||||
info.traversed++;
|
||||
if (go == 0)
|
||||
return;
|
||||
// if (go == 0)
|
||||
// return;
|
||||
|
||||
// Now we found the best. We check whether the hypersphere
|
||||
// intersect the hyperplane of the other branch
|
||||
|
Loading…
Reference in New Issue
Block a user