Use more numexpr and pyfftw
This commit is contained in:
parent
025cdba6a9
commit
7c346fa1b2
2 changed files with 32 additions and 21 deletions
|
@ -93,6 +93,9 @@ class LagrangianPerturbation(object):
|
|||
if supersample > 1:
|
||||
self.upgrade_sampling(supersample)
|
||||
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
|
||||
self._kx = self.ik[:,None,None]
|
||||
self._ky = self.ik[None,:,None]
|
||||
self._kz = self.ik[None,None,:(self.N/2+1)]
|
||||
self.cache = {}#weakref.WeakValueDictionary()
|
||||
|
||||
def upgrade_sampling(self, supersample):
|
||||
|
@ -111,14 +114,15 @@ class LagrangianPerturbation(object):
|
|||
self.cube = CubeFT(self.L, self.N, max_cpu=self.max_cpu)
|
||||
|
||||
def _gradient(self, phi, direction):
|
||||
self.cube.dhat = self._kdir(direction)*1j*phi
|
||||
ne.evaluate('phi_hat * i * kv / (kx**2 + ky**2 + kz**2)', out=self.cube.dhat,
|
||||
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(direction),
|
||||
'kx':self._kx, 'ky':self._ky, 'kz':self._kz}
|
||||
# self.cube.dhat = self._kdir(direction)*1j*phi
|
||||
self.cube.dhat[0,0,0] = 0
|
||||
return self.cube.irfft()
|
||||
|
||||
def lpt1(self, direction=0):
|
||||
k2 = self._get_k2()
|
||||
k2[0,0,0] = 1
|
||||
|
||||
return self._gradient(self.dhat/k2, direction)
|
||||
return self._gradient(self.dhat, direction)
|
||||
|
||||
def new_shape(self,direction, q=3, half=False):
|
||||
N0 = (self.N/2+1) if half else self.N
|
||||
|
@ -141,20 +145,22 @@ class LagrangianPerturbation(object):
|
|||
self.cache['k2'] = k2
|
||||
return k2
|
||||
|
||||
def _do_irfft(self, array):
|
||||
self.cube.dhat = array
|
||||
def _do_irfft(self, array, copy=True):
|
||||
if copy:
|
||||
self.cube.dhat = array
|
||||
return self.cube.irfft()
|
||||
|
||||
def _do_rfft(self, array):
|
||||
self.cube.density = array
|
||||
def _do_rfft(self, array, copy=True):
|
||||
if copy:
|
||||
self.cube.density = array
|
||||
return self.cube.rfft()
|
||||
|
||||
def lpt2(self, direction=0):
|
||||
k2 = self._get_k2()
|
||||
k2[0,0,0] = 1
|
||||
# k2 = self._get_k2()
|
||||
# k2[0,0,0] = 1
|
||||
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d/k2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'k2':k2} )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d/k2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'k2':k2} )
|
||||
|
||||
if 'lpt2_potential' not in self.cache:
|
||||
print("Rebuilding potential...")
|
||||
|
@ -162,10 +168,14 @@ class LagrangianPerturbation(object):
|
|||
for j in xrange(3):
|
||||
q = self._do_irfft( potgen0(j) ).copy()
|
||||
for i in xrange(j+1, 3):
|
||||
div_phi2 += q * self._do_irfft( potgen0(i) )
|
||||
div_phi2 -= self._do_irfft(potgen(i,j))**2
|
||||
ne.evaluate('div + q * pot', out=div_phi2,
|
||||
local_dict={'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
|
||||
)
|
||||
ne.evaluate('div - pot**2',out=div_phi2,
|
||||
local_dict={'div':div_phi2,'pot':self._do_irfft(potgen(i,j), copy=False) }
|
||||
)
|
||||
|
||||
phi2_hat = -self._do_rfft(div_phi2) / k2
|
||||
phi2_hat = self._do_rfft(div_phi2)
|
||||
#self.cache['lpt2_potential'] = phi2_hat
|
||||
del div_phi2
|
||||
else:
|
||||
|
|
|
@ -6,7 +6,7 @@ from .constants import *
|
|||
# -----------------------------------------------------------------------------
|
||||
|
||||
class KSZ_Profile(object):
|
||||
R_star= 0.050 # 15 kpc/h
|
||||
R_star= 0.015 # 15 kpc/h
|
||||
L_gal0 = 10**(0.4*(tmpp_cat['Msun']-tmpp_cat['Mstar']))
|
||||
|
||||
def __init__(self):
|
||||
|
@ -17,23 +17,24 @@ class KSZ_Profile(object):
|
|||
|
||||
def projected_profile(self, cos_theta,angularDistance):
|
||||
|
||||
idx = np.where(cos_theta > 0)[0]
|
||||
idx_base = idx = np.where(cos_theta > 0)[0]
|
||||
tan_theta_2 = 1/(cos_theta[idx]**2) - 1
|
||||
tan_theta_2_max = (self.rGalaxy/angularDistance)**2
|
||||
tan_theta_2_min = (self.R_star/angularDistance)**2
|
||||
|
||||
idx0 = np.where((tan_theta_2 < tan_theta_2_max))
|
||||
idx = idx[idx0]
|
||||
idx = idx_base[idx0]
|
||||
tan_theta_2 = tan_theta_2[idx0]
|
||||
tan_theta = np.sqrt(tan_theta_2)
|
||||
|
||||
r = (tan_theta*angularDistance)
|
||||
|
||||
m,idx_mask = self.evaluate_profile(r)
|
||||
idx_mask = idx[idx_mask]
|
||||
|
||||
idx_mask = np.append(idx_mask,np.where(tan_theta_2<tan_theta_2_min)[0])
|
||||
idx_mask = np.append(idx_mask,idx[np.where(tan_theta_2<tan_theta_2_min)[0]])
|
||||
if tan_theta_2.size > 0:
|
||||
idx_mask = np.append(idx_mask,[tan_theta_2.argmin()])
|
||||
idx_mask = np.append(idx_mask,idx[tan_theta_2.argmin()])
|
||||
|
||||
return idx,idx_mask,m
|
||||
|
||||
|
|
Loading…
Reference in a new issue