Merge branch 'master' of file:///home/lavaux/Dropbox/gitRoot/CosmoToolbox

This commit is contained in:
Guilhem Lavaux 2012-03-30 10:48:50 -05:00
commit 58203422a7
9 changed files with 681 additions and 1 deletions

View file

@ -26,3 +26,7 @@ if (HDF5_FOUND)
add_executable(testReadFlash testReadFlash.cpp)
target_link_libraries(testReadFlash ${tolink})
endif (HDF5_FOUND)
add_executable(testEskow testEskow.cpp)
target_link_libraries(testEskow ${tolink})

View file

@ -0,0 +1,7 @@
6
14.8253 -6.4243 7.8746 -1.2498 10.2733 10.2733
-6.4243 15.1024 -1.1155 -0.2761 -8.2117 -8.2117
7.8746 -1.1155 51.8519 -23.3482 12.5902 12.5902
-1.2498 -0.2761 -23.3482 22.7962 -9.8958 -9.8958
10.2733 -8.2117 12.5902 -9.8958 21.0656 21.0656
10.2733 -8.2117 12.5902 -9.8958 21.0656 21.0656

65
sample/testEskow.cpp Normal file
View file

@ -0,0 +1,65 @@
#include <fstream>
#include <cstring>
#include <iostream>
#include <iomanip>
#include <vector>
#include "eskow.hpp"
using namespace std;
double Hartmann_Matrix[6][6] = {
{ 14.8253, -6.4243, 7.8746, -1.2498, 10.2733, 10.2733 },
{ -6.4243, 15.1024, -1.1155, -0.2761, -8.2117, -8.2117 },
{ 7.8746, -1.1155, 51.8519, -23.3482, 12.5902, 12.5902 },
{ -1.2498, -0.2761, -23.3482, 22.7962, -9.8958, -9.8958 },
{ 10.2733, -8.2117, 12.5902, -9.8958, 21.0656, 21.0656 },
{ 10.2733, -8.2117, 12.5902, -9.8958, 21.0656, 21.0656 }
};
struct MatrixOp
{
vector<double> M;
int N;
double& operator()(int i, int j)
{
return M[i*N + j];
}
};
int main(int argc, char **argv)
{
MatrixOp M;
double norm_E;
ifstream fi(argv[1]);
ofstream f("eskowed.txt");
CholeskyEskow<double,MatrixOp> chol;
fi >> M.N;
M.M.resize(M.N*M.N);
for (int i = 0; i < M.N; i++)
{
for (int j = 0; j < M.N; j++)
{
fi >> M(i,j);
if (j > i)
M(i,j) =0;
}
}
chol.cholesky(M, M.N, norm_E);
for (int i = 0; i < M.N; i++)
{
for (int j = 0; j < M.N; j++)
{
if (j > i)
f << "0 ";
else
f << setprecision(25) << M(i,j) << " ";
}
f << endl;
}
return 0;
}

205
src/cic.cpp Normal file
View file

@ -0,0 +1,205 @@
#include <assert.h>
#include <math.h>
#include <inttypes.h>
#include "cic.hpp"
CICFilter::CICFilter(uint32_t N, double len)
{
spatialLen = len;
szGrid = N;
totalSize = N*N*N;
densityGrid = new CICType[totalSize];
resetMesh();
}
CICFilter::~CICFilter()
{
delete[] densityGrid;
}
void CICFilter::resetMesh()
{
for (uint32_t i = 0; i < totalSize; i++)
densityGrid[i] = 0;
}
void CICFilter::putParticles(CICParticles *particles, uint32_t N)
{
#if 0
uint32_t numCorners = 1 << NUMDIMS;
for (uint32_t i = 0; i < N; i++)
{
Coordinates xyz;
int32_t ixyz[NUMDIMS];
int32_t rxyz[NUMDIMS];
CICType alpha[NUMDIMS];
CICType beta[NUMDIMS];
for (int j = 0; j < NUMDIMS; j++)
{
xyz[j] = (particles[i].coords[j] / spatialLen * szGrid);
ixyz[j] = (int32_t)floor(xyz[j] - 0.5);
beta[j] = xyz[j] - ixyz[j] - 0.5;
alpha[j] = 1 - beta[j];
if (ixyz[j] < 0)
ixyz[j] = szGrid-1;
}
CICType tot_mass = 0;
for (int j = 0; j < numCorners; j++)
{
CICType rel_mass = 1;
uint32_t idx = 0;
uint32_t mul = 1;
uint32_t mul2 = 1;
for (int k = 0; k < NUMDIMS; k++)
{
uint32_t ipos = ((j & mul2) != 0);
if (ipos == 1)
{
rel_mass *= beta[k];
}
else
{
rel_mass *= alpha[k];
}
rxyz[k] = ixyz[k] + ipos;
if (rxyz[k] >= szGrid)
idx += (rxyz[k] - szGrid) * mul;
else
idx += rxyz[k] * mul;
mul2 *= 2;
mul *= szGrid;
}
assert(rel_mass > 0);
assert(rel_mass < 1);
assert(idx < totalSize);
densityGrid[idx] += rel_mass * particles[i].mass;
tot_mass += rel_mass;
}
assert(tot_mass < 1.1);
assert(tot_mass > 0.9);
}
#endif
#if 0
for (uint32_t i = 0; i < N; i++)
{
Coordinates xyz;
int32_t ixyz[NUMDIMS];
for (int j = 0; j < NUMDIMS; j++)
{
xyz[j] = (particles[i].coords[j] / spatialLen * szGrid);
ixyz[j] = (int32_t)round(xyz[j] - 0.5);
if (ixyz[j] < 0)
ixyz[j] = szGrid-1;
else if (ixyz[j] >= szGrid)
ixyz[j] = 0;
}
uint32_t idx = ixyz[0] + ixyz[1] * szGrid + ixyz[2] * szGrid * szGrid;
densityGrid[idx] += particles[i].mass;
}
#endif
for (uint32_t i = 0; i < N; i++)
{
CICType x, y, z;
int32_t ix, iy, iz;
int32_t ix2, iy2, iz2;
x = particles[i].coords[0] / spatialLen * szGrid + 0.5;
y = particles[i].coords[1] / spatialLen * szGrid + 0.5;
z = particles[i].coords[2] / spatialLen * szGrid + 0.5;
if (x < 0)
x += szGrid;
if (y < 0)
y += szGrid;
if (z < 0)
z += szGrid;
ix = ((int32_t)floor(x));
iy = ((int32_t)floor(y));
iz = ((int32_t)floor(z));
ix2 = (ix + 1) % szGrid;
iy2 = (iy + 1) % szGrid;
iz2 = (iz + 1) % szGrid;
CICType alpha_x = x - ix;
CICType alpha_y = y - iy;
CICType alpha_z = z - iz;
ix %= szGrid;
iy %= szGrid;
iz %= szGrid;
assert(alpha_x >= 0);
assert(alpha_y >= 0);
assert(alpha_z >= 0);
CICType beta_x = 1 - alpha_x;
CICType beta_y = 1 - alpha_y;
CICType beta_z = 1 - alpha_z;
assert(beta_x >= 0);
assert(beta_y >= 0);
assert(beta_z >= 0);
CICType mass = particles[i].mass;
uint32_t idx;
// 000
idx = ix + (iy + iz * szGrid) * szGrid;
densityGrid[idx] +=
mass * beta_x * beta_y * beta_z;
// 100
idx = ix2 + (iy + iz * szGrid) * szGrid;
densityGrid[idx] +=
mass * alpha_x * beta_y * beta_z;
// 010
idx = ix + (iy2 + iz * szGrid) * szGrid;
densityGrid[idx] +=
mass * beta_x * alpha_y * beta_z;
// 110
idx = ix2 + (iy2 + iz * szGrid) * szGrid;
densityGrid[idx] +=
mass * alpha_x * alpha_y * beta_z;
// 001
idx = ix + (iy + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
mass * beta_x * beta_y * alpha_z;
// 101
idx = ix2 + (iy + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
mass * alpha_x * beta_y * alpha_z;
// 011
idx = ix + (iy2 + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
mass * beta_x * alpha_y * alpha_z;
// 111
idx = ix2 + (iy2 + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
mass * alpha_x * alpha_y * alpha_z;
}
}
void CICFilter::getDensityField(CICType*& field, uint32_t& res)
{
field = densityGrid;
res = totalSize;
}

35
src/cic.hpp Normal file
View file

@ -0,0 +1,35 @@
#ifndef __CICFILTER_HPP
#define __CICFILTER_HPP
#include "CosmoTool/config.hpp"
#include <inttypes.h>
using namespace CosmoTool;
typedef float CICType;
typedef struct
{
float mass;
Coordinates coords;
} CICParticles;
class CICFilter
{
public:
CICFilter(uint32_t resolution, double spatialLen);
~CICFilter();
void resetMesh();
void putParticles(CICParticles *particles, uint32_t N);
void getDensityField(CICType*& field, uint32_t& res);
protected:
CICType *densityGrid;
double spatialLen;
uint32_t totalSize;
uint32_t szGrid;
};
#endif

271
src/eskow.hpp Normal file
View file

@ -0,0 +1,271 @@
#ifndef __ESKOW_CHOLESKY_HPP
#define __ESKOW_CHOLESKY_HPP
#include <cmath>
#include <vector>
#include "mach.hpp"
/* Implementation of Schnabel & Eskow, 1999, Vol. 9, No. 4, pp. 1135-148, SIAM J. OPTIM. */
template<typename T, typename A>
class CholeskyEskow
{
private:
static const bool verbose_eskow = true;
T tau, tau_bar, mu;
void print_matrix(A& m, int N)
{
using std::cout;
using std::endl;
using std::setprecision;
if (verbose_eskow)
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
cout.width(6);
cout << setprecision(5) << m(i,j) << " ";
}
cout << endl;
}
cout << endl;
}
}
T max_diag(A& m, int j, int N)
{
T maxval = std::abs(m(j,j));
for (int k = j+1; k < N; k++)
{
maxval = std::max(maxval, std::abs(m(k,k)));
}
return maxval;
}
void minmax_diag(A& m, int j, int N, T& minval, T& maxval, int& i_min, int& i_max)
{
i_min = i_max = j;
minval = maxval = m(j,j);
for (int k = j+1; k < N; k++)
{
maxval = std::max(maxval, m(k,k));
minval = std::min(minval, m(k,k));
}
for (int k = j; k < N; k++)
{
if (m(k,k) == minval && i_min < 0)
i_min = k;
if (m(k,k) == maxval && i_max < 0)
i_max = k;
}
}
void swap_rows(A& m, int N, int i0, int i1)
{
for (int r = 0; r < N; r++)
std::swap(m(r,i0), m(r,i1));
}
void swap_cols(A& m, int N, int i0, int i1)
{
for (int c = 0; c < N; c++)
std::swap(m(i0,c), m(i1,c));
}
T square(T x)
{
return x*x;
}
T min_row(A& m, int j, int N)
{
T a = 1/m(j,j);
T v = m(j+1,j+1) - square(m(j+1,j))*a;
for (int i = j+2; i < N; i++)
{
v = std::min(v, m(i, i) - square(m(i,j))*a);
}
return v;
}
int g_max(const std::vector<T>& g, int j, int N)
{
T a = g[j];
int k = j;
for (int i = j+1; i < N; i++)
{
if (a < g[i])
{
a = g[i];
k = i;
}
}
return k;
}
public:
CholeskyEskow()
{
tau = std::pow(mach_epsilon<T>(), 1./3);
tau_bar = std::pow(mach_epsilon<T>(), 2./3);
mu=0.1;
}
void cholesky(A& m, int N, T& norm_E)
{
bool phaseone = true;
T gamma = max_diag(m, 0, N);
int j;
norm_E = 0;
for (j = 0; j < N && phaseone; j++)
{
T minval, maxval;
int i_min, i_max;
print_matrix(m, N);
minmax_diag(m, j, N, minval, maxval, i_min, i_max);
if (maxval < tau_bar*gamma || minval < -mu*maxval)
{
phaseone = false;
break;
}
if (i_max != j)
{
std::cout << "Have to swap i=" << i_max << " and j=" << j << std::endl;
swap_cols(m, N, i_max, j);
swap_rows(m, N, i_max, j);
}
if (min_row(m, j, N) < -mu*gamma)
{
phaseone = false;
break;
}
T L_jj = std::sqrt(m(j,j));
m(j,j) = L_jj;
for (int i = j+1; i < N; i++)
{
m(i,j) /= L_jj;
for (int k = j+1; k <= i; k++)
m(i,k) -= m(i,j)*m(k,j);
}
}
if (!phaseone && j == N-1)
{
T A_nn = m(N-1,N-1);
T delta = -A_nn + std::max(tau*(-A_nn)/(1-tau), tau_bar*gamma);
m(N-1,N-1) = std::sqrt(m(N-1,N-1) + delta);
}
if (!phaseone && j < (N-1))
{
std::cout << "Phase two ! (j=" << j << ")" << std::endl;
int k = j-1;
std::vector<T> g(N);
for (int i = k+1; i < N; i++)
{
g[i] = m(i,i);
for (int j = k+1; j < i; j++)
g[i] -= std::abs(m(i,j));
for (int j = i+1; j < N; j++)
g[i] -= std::abs(m(j,i));
}
T delta, delta_prev = 0;
for (int j = k+1; j < N-2; j++)
{
int i = g_max(g, j, N);
T norm_j;
print_matrix(m, N);
if (i != j)
{
swap_cols(m, N, i, j);
swap_rows(m, N, i, j);
}
for (int i = j+1; j < N; j++)
{
norm_j += std::abs(m(i,j));
}
delta = std::max(delta_prev, std::max((T)0, -m(j,j) + std::max(norm_j,tau_bar*gamma)));
if (delta > 0)
{
m(j,j) += delta;
delta_prev = delta;
}
if (m(j,j) != norm_j)
{
T temp = 1 - norm_j/m(j,j);
for (int i = j+1; j < N; j++)
{
g[i] += std::abs(m(i,j))*temp;
}
}
// Now we do the classic cholesky iteration
T L_jj = std::sqrt(m(j,j));
m(j,j) = L_jj;
for (int i = j+1; i < N; i++)
{
m(i,j) /= L_jj;
for (int k = j+1; k <= i; k++)
m(i,k) -= m(i,j)*m(k,j);
}
}
// The final 2x2 submatrix is special
T A00 = m(N-2, N-2), A01 = m(N-2, N-1), A11 = m(N-1,N-1);
T sq_DELTA = std::sqrt(square(A00-A11) + square(A01));
T lambda_hi = 0.5*((A00+A11) + sq_DELTA);
T lambda_lo = 0.5*((A00+A11) - sq_DELTA);
delta = std::max(std::max((T)0, -lambda_lo + std::max(tau*sq_DELTA/(1-tau), tau_bar*gamma)),delta_prev);
if (delta > 0)
{
m(N-1,N-1) += delta;
m(N,N) += delta;
delta_prev = delta;
}
m(N-2,N-2) = A00 = std::sqrt(A00);
m(N-1,N-2) = (A01 /= A00);
m(N-1,N-1) = std::sqrt(A11-A01*A01);
norm_E = delta_prev;
}
}
};
#endif

View file

@ -273,3 +273,73 @@ SimuData *CosmoTool::loadGadgetMulti(const char *fname, int id, int loadflags, i
}
void CosmoTool::writeGadget(const char *fname, SimuData *data, int GadgetFormat)
{
UnformattedWrite *f;
int npart[6];
float mass[6];
if (data->Pos[0] == 0 || data->Vel[0] == 0 || data->Id == 0)
return;
f = new UnformattedWrite(fname);
if (f == 0)
return;
for (int i = 0; i < 6; i++)
{
npart[i] = 0;
mass[i] = 0;
}
npart[1] = data->NumPart;
f->beginCheckpoint();
for (int i = 0; i < 6; i++)
f->writeInt32(npart[i]);
for (int i = 0; i < 6; i++)
f->writeReal64(mass[i]);
f->writeReal64(data->time);
f->writeReal64(1/data->time-1);
f->writeInt32(0);
f->writeInt32(0);
for (int i = 0; i < 6; i++)
f->writeInt32(npart[i]);
f->writeInt32(0);
f->writeInt32(1);
f->writeReal64(data->BoxSize);
f->writeReal64(data->Omega_M);
f->writeReal64(data->Omega_Lambda);
f->writeReal64(data->Hubble);
f->endCheckpoint();
f->beginCheckpoint();
for(int n = 0; n < data->NumPart; n++) {
for (int k = 0; k < 3; k++)
f->writeReal32(data->Pos[k][n]);
}
f->endCheckpoint();
float velmul = 1.0;
if (GadgetFormat == 1)
velmul = sqrt(data->time);
f->beginCheckpoint();
for(int n = 0; n < data->NumPart; n++) {
for (int k = 0; k < 3; k++)
f->writeReal32(data->Vel[k][n]/velmul);
}
f->endCheckpoint();
f->beginCheckpoint();
for(int n = 0; n < data->NumPart; n++)
{
f->writeReal32(data->Id[n]);
}
f->endCheckpoint();
}

View file

@ -9,7 +9,10 @@ namespace CosmoTool {
PurePositionData *loadGadgetPosition(const char *fname);
SimuData *loadGadgetMulti(const char *fname, int id, int flags, int GadgetFormat = 1);
// Only single snapshot supported
void writeGadget(const char *fname, SimuData *data, int GadgetFormat = 1);
};
#endif

20
src/mach.hpp Normal file
View file

@ -0,0 +1,20 @@
#ifndef __COSMO_MACHINE_TEST_HPP
#define __COSMO_MACHINE_TEST_HPP
#include <iostream>
template<typename T>
T mach_epsilon()
{
T eps = (T)1;
do
{
eps /= 2;
}
while ((T)(1 + (eps/2)) != (T)1);
return eps;
}
#endif