Merge branch 'master' of bitbucket.org:glavaux/cosmotool
This commit is contained in:
commit
5395097fa7
@ -22,11 +22,11 @@ option(INTERNAL_HDF5 "Build internal version of HDF5" OFF)
|
||||
option(INTERNAL_NETCDF "Build internal version of NETCDF" OFF)
|
||||
option(INTERNAL_BOOST "Build internal version of BOOST" OFF)
|
||||
|
||||
IF(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
SET(CosmoTool_local CosmoTool_static)
|
||||
ELSE(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
#IF(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
# SET(CosmoTool_local CosmoTool_static)
|
||||
#ELSE(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
SET(CosmoTool_local CosmoTool)
|
||||
ENDIF(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
#ENDIF(NOT BUILD_SHARED_LIBS AND BUILD_STATIC_LIBS)
|
||||
|
||||
MESSAGE(STATUS "Using the target ${CosmoTool_local} to build python module")
|
||||
|
||||
|
@ -23,16 +23,16 @@ class SimulationBare(PySimulationBase):
|
||||
def merge(self, other):
|
||||
|
||||
def _safe_merge(a, b):
|
||||
if b:
|
||||
if a:
|
||||
if b is not None:
|
||||
if a is not None:
|
||||
a = [np.append(q, r) for q,r in zip(a,b)]
|
||||
else:
|
||||
a = b
|
||||
return a
|
||||
|
||||
def _safe_merge0(a, b):
|
||||
if b:
|
||||
if a:
|
||||
if b is not None:
|
||||
if a is not None:
|
||||
a = np.append(a, b)
|
||||
else:
|
||||
a = b
|
||||
|
@ -100,13 +100,35 @@ def build_unit_vectors(N):
|
||||
|
||||
return ux,uy,uz
|
||||
|
||||
def generate_from_catalog(dmin,dmax,Nside,perturb=0.0,y=0.0,do_random=False,do_hubble=False):
|
||||
def compute_vcmb(l, b):
|
||||
# Motion is obtained from Tully (2007): sun_vs_LS + LS_vs_CMB
|
||||
motion = [-25.,-246.,277.];
|
||||
|
||||
x = np.cos(l*np.pi/180) * np.cos(b*np.pi/180)
|
||||
y = np.sin(l*np.pi/180) * np.cos(b*np.pi/180)
|
||||
z = np.sin(b*np.pi/180)
|
||||
|
||||
return x*motion[0] + y*motion[1] + z*motion[2]
|
||||
|
||||
|
||||
def compute_vlg(l,b):
|
||||
|
||||
motion = [-79,296,-36]; # [-86, 305, -33];
|
||||
|
||||
x = np.cos(l*np.pi/180) * np.cos(b*np.pi/180)
|
||||
y = np.sin(l*np.pi/180) * np.cos(b*np.pi/180)
|
||||
z = np.sin(b*np.pi/180)
|
||||
|
||||
return x*motion[0] + y*motion[1] + z*motion[2]
|
||||
|
||||
|
||||
def generate_from_catalog(dmin,dmax,Nside,perturb=0.0,y=0.0,do_random=False,do_hubble=False,x=2.37,bright=-np.inf,bright_list=[],use_vlg=True,sculpt=-1):
|
||||
import progressbar as pbar
|
||||
|
||||
cat = np.load("2m++.npy")
|
||||
|
||||
cat['distance'] = cat['best_velcmb']
|
||||
cat = cat[np.where((cat['distance']>100*dmin)*(cat['distance']<dmax*100))]
|
||||
# cat = cat[np.where((cat['distance']>100*dmin)*(cat['distance']<dmax*100))]
|
||||
|
||||
deg2rad = np.pi/180
|
||||
Npix = 12*Nside**2
|
||||
@ -119,14 +141,19 @@ def generate_from_catalog(dmin,dmax,Nside,perturb=0.0,y=0.0,do_random=False,do_h
|
||||
ksz_hubble_template = np.zeros(ksz_template.size, dtype=np.float64)
|
||||
|
||||
for i in pbar.ProgressBar(maxval = cat.size, widgets=[pbar.Bar(), pbar.ETA()])(cat):
|
||||
# Skip too point sources
|
||||
if i['name'] in bright_list:
|
||||
print("Object %s is in bright list" % i['name'])
|
||||
continue
|
||||
|
||||
if do_random:
|
||||
l = np.random.rand()*360
|
||||
b = np.arcsin(2*np.random.rand()-1)*180/np.pi
|
||||
else:
|
||||
l,b=i['gal_long'],i['gal_lat']
|
||||
l0,b0=i['gal_long'],i['gal_lat']
|
||||
|
||||
l=ne.evaluate('l*deg2rad')
|
||||
b=ne.evaluate('b*deg2rad')
|
||||
l=ne.evaluate('l0*deg2rad')
|
||||
b=ne.evaluate('b0*deg2rad')
|
||||
|
||||
dtheta,dphi = np.random.randn(2)*perturb
|
||||
theta,l=move_direction(dtheta,dphi,0.5*np.pi - b, l)
|
||||
@ -137,10 +164,23 @@ def generate_from_catalog(dmin,dmax,Nside,perturb=0.0,y=0.0,do_random=False,do_h
|
||||
y0 = np.sin(l)*np.cos(b)
|
||||
z0 = np.sin(b)
|
||||
|
||||
DA =i['distance']/100
|
||||
if use_vlg:
|
||||
vlg = i['best_velcmb'] - compute_vcmb(l0, b0) + compute_vlg(l0, b0)
|
||||
DA = vlg/100
|
||||
else:
|
||||
DA = i['best_velcmb'] / 100
|
||||
|
||||
if DA < dmin or DA > dmax:
|
||||
continue
|
||||
|
||||
Lgal = DA**2*10**(0.4*(tmpp_cat['Msun']-i['K2MRS']+25))
|
||||
|
||||
profiler = ksz.KSZ_Isothermal(Lgal, 2.37, y=y)
|
||||
M_K=i['K2MRS']-5*np.log10(DA)-25
|
||||
# Skip too bright galaxies
|
||||
if M_K < bright:
|
||||
continue
|
||||
|
||||
profiler = ksz.KSZ_Isothermal(Lgal, x, y=y, sculpt=sculpt)
|
||||
|
||||
idx0 = hp.query_disc(Nside, (x0,y0,z0), 3*profiler.rGalaxy/DA)
|
||||
|
||||
@ -177,12 +217,17 @@ def get_args():
|
||||
parser.add_argument('--depth_max', type=float, default=60)
|
||||
parser.add_argument('--ksz_map', type=str, required=True)
|
||||
parser.add_argument('--base_fig', type=str, default="kszfig.png")
|
||||
parser.add_argument('--build_dipole', type=bool, default=False)
|
||||
parser.add_argument('--build_dipole', action='store_true')
|
||||
parser.add_argument('--degrade', type=int, default=-1)
|
||||
parser.add_argument('--y',type=float,default=0.0)
|
||||
parser.add_argument('--random', type=bool, default=False)
|
||||
parser.add_argument('--x',type=float,default=2.37)
|
||||
parser.add_argument('--random', action='store_true')
|
||||
parser.add_argument('--perturb', type=float, default=0)
|
||||
parser.add_argument('--hubble_monopole', type=bool, default=False)
|
||||
parser.add_argument('--hubble_monopole', action='store_true')
|
||||
parser.add_argument('--remove_bright', type=float, default=-np.inf)
|
||||
parser.add_argument('--bright_file', type=str)
|
||||
parser.add_argument('--lg', action='store_true')
|
||||
parser.add_argument('--sculpt_beam', type=float, default=-1)
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
@ -195,7 +240,16 @@ def main():
|
||||
|
||||
print("Generating map...")
|
||||
|
||||
r = generate_from_catalog(args.depth_min,args.depth_max,args.Nside,perturb=args.perturb,y=args.y,do_random=args.random,do_hubble=args.hubble_monopole)
|
||||
with open("crap.txt", mode="r") as f:
|
||||
bright_list = [l.split('#')[0].strip(" \t\n\r") for l in f]
|
||||
|
||||
if args.bright_file:
|
||||
with open(args.bright_file, mode="r") as f:
|
||||
idx_name = f.readline().split(',').index('name_2')
|
||||
bright_list = bright_list + [l.split(',')[idx_name] for l in f]
|
||||
|
||||
print("Built bright point source list: " + repr(bright_list))
|
||||
r = generate_from_catalog(args.depth_min,args.depth_max,args.Nside,perturb=args.perturb,y=args.y,do_random=args.random,do_hubble=args.hubble_monopole,x=args.x,bright=args.remove_bright,use_vlg=args.lg,bright_list=bright_list,sculpt=args.sculpt_beam)
|
||||
hubble_map = None
|
||||
if args.hubble_monopole:
|
||||
proj,mask,hubble_map = r
|
||||
|
@ -4,10 +4,11 @@ import cosmolopy as cpy
|
||||
from cosmogrowth import *
|
||||
import borgadaptor as ba
|
||||
|
||||
@ct.timeit
|
||||
def gen_posgrid(N, L, delta=1, dtype=np.float32):
|
||||
""" Generate an ordered lagrangian grid"""
|
||||
|
||||
ix = (np.arange(N)*L/N*delta).astype(dtype)
|
||||
ix = (np.arange(N)*(L/N*delta)).astype(dtype)
|
||||
|
||||
x = ix[:,None,None].repeat(N, axis=1).repeat(N, axis=2)
|
||||
y = ix[None,:,None].repeat(N, axis=0).repeat(N, axis=2)
|
||||
@ -147,6 +148,8 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, supergenerate
|
||||
|
||||
D2 = -3./7 * D1_0**2
|
||||
|
||||
if do_lpt2:
|
||||
psi2 = lpt.lpt2('all')
|
||||
for j in xrange(3):
|
||||
# Generate psi_j (displacement along j)
|
||||
print("LPT1 axis=%d" % j)
|
||||
@ -154,8 +157,7 @@ def run_generation(input_borg, a_borg, a_ic, cosmo, supersample=1, supergenerate
|
||||
psi = psi.reshape((psi.size,))
|
||||
if do_lpt2:
|
||||
print("LPT2 axis=%d" % j)
|
||||
psi2 = lpt.lpt2(j)
|
||||
psi += D2 * psi2.reshape((psi2.size,))
|
||||
psi += D2 * psi2[j].reshape((psi2[j].size,))
|
||||
# Generate posx
|
||||
posx.append(((posq[j] + psi)%L).astype(np.float32))
|
||||
# Generate vel
|
||||
|
@ -4,6 +4,7 @@ import pyfftw
|
||||
import weakref
|
||||
import numpy as np
|
||||
import cosmolopy as cpy
|
||||
import cosmotool as ct
|
||||
|
||||
class CubeFT(object):
|
||||
def __init__(self, L, N, max_cpu=-1):
|
||||
@ -98,6 +99,7 @@ class LagrangianPerturbation(object):
|
||||
self._kz = self.ik[None,None,:(self.N/2+1)]
|
||||
self.cache = {}#weakref.WeakValueDictionary()
|
||||
|
||||
@ct.timeit_quiet
|
||||
def upgrade_sampling(self, supersample):
|
||||
N2 = self.N * supersample
|
||||
N = self.N
|
||||
@ -113,14 +115,26 @@ class LagrangianPerturbation(object):
|
||||
self.N = N2
|
||||
self.cube = CubeFT(self.L, self.N, max_cpu=self.max_cpu)
|
||||
|
||||
@ct.timeit_quiet
|
||||
def _gradient(self, phi, direction):
|
||||
if direction == 'all':
|
||||
dirs = [0,1,2]
|
||||
copy = True
|
||||
else:
|
||||
dirs = [direction]
|
||||
copy = False
|
||||
ret=[]
|
||||
for dir in dirs:
|
||||
ne.evaluate('phi_hat * i * kv / (kx**2 + ky**2 + kz**2)', out=self.cube.dhat,
|
||||
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(direction),
|
||||
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(dir),
|
||||
'kx':self._kx, 'ky':self._ky, 'kz':self._kz},casting='unsafe')
|
||||
# self.cube.dhat = self._kdir(direction)*1j*phi
|
||||
self.cube.dhat[0,0,0] = 0
|
||||
return self.cube.irfft()
|
||||
x = self.cube.irfft()
|
||||
ret.append(x.copy() if copy else x)
|
||||
return ret[0] if len(ret)==1 else ret
|
||||
|
||||
@ct.timeit_quiet
|
||||
def lpt1(self, direction=0):
|
||||
return self._gradient(self.dhat, direction)
|
||||
|
||||
@ -155,6 +169,7 @@ class LagrangianPerturbation(object):
|
||||
self.cube.density = array
|
||||
return self.cube.rfft()
|
||||
|
||||
@ct.timeit_quiet
|
||||
def lpt2(self, direction=0):
|
||||
# k2 = self._get_k2()
|
||||
# k2[0,0,0] = 1
|
||||
@ -170,6 +185,7 @@ class LagrangianPerturbation(object):
|
||||
for j in xrange(3):
|
||||
q = self._do_irfft( potgen0(j) ).copy()
|
||||
for i in xrange(j+1, 3):
|
||||
with ct.time_block("LPT2 elemental (%d,%d)" %(i,j)):
|
||||
ne.evaluate('div + q * pot', out=div_phi2,
|
||||
local_dict={'div':div_phi2, 'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
|
||||
)
|
||||
|
@ -27,6 +27,7 @@ tmpp_cat={'Msun':3.29,
|
||||
baryon_fraction = Omega_baryon / Omega_matter
|
||||
|
||||
ksz_normalization = -T_cmb*sigmaT*v_unit/(lightspeed*mu*mp) * baryon_fraction
|
||||
assert ksz_normalization < 0
|
||||
rho_mean_matter = Omega_matter * (3*(100e3/Mpc)**2/(8*np.pi*G))
|
||||
Lbar = tmpp_cat['lbar'] / Mpc**3
|
||||
M_over_L_galaxy = rho_mean_matter / Lbar
|
||||
|
@ -10,7 +10,14 @@ class KSZ_Profile(object):
|
||||
R_star= 0.0 # 15 kpc/h
|
||||
L_gal0 = 10**(0.4*(tmpp_cat['Msun']-tmpp_cat['Mstar']))
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self,sculpt):
|
||||
"""Base class for KSZ profiles
|
||||
|
||||
Arguments:
|
||||
sculpt (float): If negative, do not sculpt. If positive, there will be a 2d
|
||||
suppression of the profile with a radius given by sculpt (in arcmins).
|
||||
"""
|
||||
self.sculpt = sculpt * np.pi/180/60.
|
||||
self.rGalaxy = 1.0
|
||||
|
||||
def evaluate_profile(self, r):
|
||||
@ -37,6 +44,11 @@ class KSZ_Profile(object):
|
||||
if tan_theta_2.size > 0:
|
||||
idx_mask = np.append(idx_mask,idx[tan_theta_2.argmin()])
|
||||
|
||||
if self.sculpt > 0:
|
||||
theta = np.arctan(tan_theta)
|
||||
cond = theta < self.sculpt
|
||||
m[cond] *= (theta[cond]/self.sculpt)**2
|
||||
|
||||
return idx,idx_mask,m
|
||||
|
||||
|
||||
@ -48,10 +60,20 @@ class KSZ_Isothermal(KSZ_Profile):
|
||||
sigma_FP=160e3 #m/s
|
||||
R_innergal = 0.030
|
||||
|
||||
def __init__(self, Lgal, x, y=0.0):
|
||||
"Support for Isothermal profile"
|
||||
def __init__(self, Lgal, x, y=0.0, sculpt=-1):
|
||||
"""Support for Isothermal profile
|
||||
|
||||
super(KSZ_Isothermal,self).__init__()
|
||||
Arguments:
|
||||
Lgal (float): Galaxy luminosity in solar units
|
||||
x (float): extent of halo in virial radius units
|
||||
|
||||
Keyword arguments:
|
||||
y (float): Inner part where there is no halo
|
||||
sculpt (float): If negative, do not sculpt. If positive, there will be a 2d
|
||||
suppression of the profile with a radius given by sculpt (in arcmins).
|
||||
"""
|
||||
|
||||
super(KSZ_Isothermal,self).__init__(sculpt)
|
||||
|
||||
self.R_gal = 0.226 * x
|
||||
self.R_innergal *= y
|
||||
@ -71,7 +93,7 @@ class KSZ_Isothermal(KSZ_Profile):
|
||||
|
||||
Q = np.zeros(r.size)
|
||||
|
||||
cond = (r<=0)
|
||||
cond = (r<=1e-10)
|
||||
Q[cond] = rho0*2/Mpc * (rGalaxy-rInner)/(rGalaxy*rInner)
|
||||
|
||||
cond = (r>0)*(r <= rInner)
|
||||
@ -84,7 +106,7 @@ class KSZ_Isothermal(KSZ_Profile):
|
||||
Q[cond] = ne.evaluate('rho0*2/(Mpc*r) * arctan(sqrt( (rGalaxy/r)**2 -1 ))',
|
||||
local_dict=D)
|
||||
|
||||
return Q,np.where(r<rInner)[0]
|
||||
return Q,[] #np.where(r<rInner)[0]
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
|
Loading…
Reference in New Issue
Block a user