Fixed CIC errors. Added support for CosmoPower in _cosmotool.pyx

This commit is contained in:
Guilhem Lavaux 2014-06-03 09:51:26 +02:00
parent 0a28eb3e04
commit 302ed9a912
8 changed files with 230 additions and 110 deletions

View File

@ -6,6 +6,47 @@ from cpython cimport PyObject, Py_INCREF
np.import_array()
cdef extern from "cosmopower.hpp" namespace "CosmoTool":
cdef enum CosmoFunction "CosmoTool::CosmoPower::CosmoFunction":
POWER_EFSTATHIOU "CosmoTool::CosmoPower::POWER_EFSTATHIOU",
HU_WIGGLES "CosmoTool::CosmoPower::HU_WIGGLES",
HU_BARYON "CosmoTool::CosmoPower::HU_BARYON",
OLD_POWERSPECTRUM,
POWER_BARDEEN "CosmoTool::CosmoPower::POWER_BARDEEN",
POWER_SUGIYAMA "CosmoTool::CosmoPower::POWER_SUGIYAMA",
POWER_BDM,
POWER_TEST
cdef cppclass CosmoPower:
double n
double K0
double V_LG_CMB
double CMB_VECTOR[3]
double h
double SIGMA8
double OMEGA_B
double OMEGA_C
double omega_B
double omega_C
double Theta_27
double OMEGA_0
double Omega
double beta
double OmegaEff
double Gamma0
double normPower
CosmoPower()
void setFunction(CosmoFunction)
void updateCosmology()
void updatePhysicalCosmology()
void normalize()
void setNormalization(double)
double power(double)
cdef extern from "loadSimu.hpp" namespace "CosmoTool":
@ -302,4 +343,60 @@ def loadRamses(str basepath, int snapshot_id, int cpu_id, bool doublePrecision =
return _PySimulationAdaptor(wrap_simudata(data, flags))
def loadAllRamses(str basepath, int
cdef class CosmologyPower:
cdef CosmoPower power
def __init__(self,**cosmo):
self.power = CosmoPower()
self.power.OMEGA_B = cosmo['omega_B_0']
self.power.OMEGA_C = cosmo['omega_M_0']-cosmo['omega_B_0']
self.power.h = cosmo['h']
if 'ns' in cosmo:
self.power.n = cosmo['ns']
assert self.power.OMEGA_C > 0
self.power.updateCosmology()
def normalize(self,s8):
self.power.SIGMA8 = s8
self.power.normalize()
def setFunction(self,funcname):
cdef CosmoFunction f
f = POWER_EFSTATHIOU
if funcname=='EFSTATHIOU':
f = POWER_EFSTATHIOU
elif funcname=='HU_WIGGLES':
f = HU_WIGGLES
elif funcname=='HU_BARYON':
f = HU_BARYON
elif funcname=='BARDEEN':
f = POWER_BARDEEN
elif funcname=='SUGIYAMA':
f = POWER_SUGIYAMA
self.power.setFunction(f)
cdef double _compute(self, double k):
k *= self.power.h
return self.power.power(k)
def compute(self, k):
cdef np.ndarray out
cdef double kval
cdef tuple i
if isinstance(k, np.ndarray):
out = np.empty(k.shape, dtype=np.float64)
for i,kval in np.ndenumerate(k):
out[i] = self._compute(kval)
return out
else:
return self._compute(k)

View File

@ -1,5 +1,5 @@
from _cosmotool import *
from grafic import writeGrafic, writeWhitePhase
from grafic import writeGrafic, writeWhitePhase, readGrafic
from borg import read_borg_vol
@ -13,9 +13,9 @@ class SimulationBare(PySimulationBase):
raise TypeError("Simulation object to mirror must be a PySimulationBase")
s = args[0]
self.positions = s.getPositions()
self.velocities = s.getVelocities()
self.identifiers = s.getIdentifiers()
self.positions = [q.copy() for q in s.getPositions()] if s.getPositions() is not None else None
self.velocities = [q.copy() for q in s.getVelocities()] if s.getVelocities() is not None else None
self.identifiers = s.getIdentifiers().copy() if s.getIdentifiers() is not None else None
self.boxsize = s.getBoxsize()
self.time = s.getTime()
self.Hubble = s.getHubble()
@ -28,7 +28,7 @@ class SimulationBare(PySimulationBase):
def _safe_merge(a, b):
if b:
if a:
a = [np.append(q, r) for q,r in zip(a,other.positions)]
a = [np.append(q, r) for q,r in zip(a,b)]
else:
a = b
return a
@ -42,15 +42,15 @@ class SimulationBare(PySimulationBase):
return a
assert self.time == other.time
assert self.Hubble == other.Hubble
assert self.boxsize == other.boxsize
assert self.Omega_M == other.Omega_M
assert self.Omega_Lambda == other.Omega_Lambda
assert self.time == other.getTime()
assert self.Hubble == other.getHubble()
assert self.boxsize == other.getBoxsize()
assert self.Omega_M == other.getOmega_M()
assert self.Omega_Lambda == other.getOmega_Lambda()
self.positions = _safe_merge(self.positions, other.positions)
self.velocities = _safe_merge(self.velocities, other.velocities)
self.identifiers = _safe_merge0(self.idenfiers, other.identifiers)
self.positions = _safe_merge(self.positions, other.getPositions())
self.velocities = _safe_merge(self.velocities, other.getVelocities())
self.identifiers = _safe_merge0(self.identifiers, other.getIdentifiers())
def getPositions(self):
return self.positions
@ -106,7 +106,7 @@ def loadRamsesAll(basepath, snapshot_id, **kwargs):
cpu_id = 0
output = None
while True:
s = loadRamses("%s/output_%05d" % (basepath,snapshot_id), cpu_id, **kwargs)
s = loadRamses("%s/output_%05d" % (basepath,snapshot_id), snapshot_id, cpu_id, **kwargs)
if s == None:
break
if output == None:
@ -115,3 +115,5 @@ def loadRamsesAll(basepath, snapshot_id, **kwargs):
output.merge(s)
cpu_id += 1
return output

View File

@ -1,6 +1,32 @@
import struct
import numpy as np
def readGrafic(filename):
with file(filename, mode="rb") as f:
p = struct.unpack("IIIIffffffffI", f.read(4*11 + 2*4))
checkPoint0, Nx, Ny, Nz, delta, _, _, _, scalefac, omega0, omegalambda0, h, checkPoint1 = p
if checkPoint0 != checkPoint1 or checkPoint0 != 4*11:
raise ValueError("Invalid unformatted access")
a = np.empty((Nx,Ny,Nz), dtype=np.float32)
BoxSize = delta * Nx * h
checkPoint = 4*Ny*Nz
for i in xrange(Nx):
checkPoint = struct.unpack("I", f.read(4))[0]
if checkPoint != 4*Ny*Nz:
raise ValueError("Invalid unformatted access")
a[i, :, :] = np.fromfile(f, dtype=np.float32, count=Ny*Nz).reshape((Ny, Nz))
checkPoint = struct.unpack("I", f.read(4))[0]
if checkPoint != 4*Ny*Nz:
raise ValueError("Invalid unformatted access")
return a, BoxSize, scalefac, omega0, omegalambda0, h
def writeGrafic(filename, field, BoxSize, scalefac, **cosmo):
with file(filename, mode="wb") as f:

View File

@ -15,6 +15,40 @@ def gen_posgrid(N, L):
return x.flatten(), y.flatten(), z.flatten()
def bin_power(P, L, bins=20, range=(0,1.)):
N = P.shape[0]
ik = np.fft.fftfreq(N, d=L/N)*2*np.pi
k = np.sqrt(ik[:,None,None]**2 + ik[None,:,None]**2 + ik[None,None,:(N/2+1)]**2)
H,b = np.histogram(k, bins=bins, range=range)
Hw,b = np.histogram(k, bins=bins, weights=P, range=range)
return Hw/H, 0.5*(b[1:]+b[0:bins])
def compute_power_from_borg(input_borg, a_borg, cosmo, bins=10, range=(0,1)):
borg_vol = ct.read_borg_vol(input_borg)
N = borg_vol.density.shape[0]
cgrowth = CosmoGrowth(**cosmo)
D1 = cgrowth.D(1)
D1_0 = D1/cgrowth.D(a_borg)
density_hat, L = ba.half_pixel_shift(borg_vol)
return bin_power(D1_0**2*np.abs(density_hat)**2/L**3, L, bins=bins, range=range)
def compute_ref_power(L, N, cosmo, bins=10, range=(0,1), func='HU_WIGGLES'):
ik = np.fft.fftfreq(N, d=L/N)*2*np.pi
k = np.sqrt(ik[:,None,None]**2 + ik[None,:,None]**2 + ik[None,None,:(N/2+1)]**2)
p = ct.CosmologyPower(**cosmo)
p.setFunction(func)
p.normalize(cosmo['SIGMA8'])
return bin_power(p.compute(k)*cosmo['h']**3, L, bins=bins, range=range)
def run_generation(input_borg, a_borg, a_ic, **cosmo):
""" Generate particles and velocities from a BORG snapshot. Returns a tuple of
(positions,velocities,N,BoxSize,scale_factor)."""
@ -26,7 +60,6 @@ def run_generation(input_borg, a_borg, a_ic, **cosmo):
density_hat, L = ba.half_pixel_shift(borg_vol)
lpt = LagrangianPerturbation(density_hat, L, fourier=True)
# Generate grid

View File

@ -1,11 +1,14 @@
import cosmotool as ct
import borgicgen as bic
cosmo={'omega_M_0':0.3175, 'h':0.6711}
cosmo['omega_lambda_0']=1-cosmo['omega_M_0']
cosmo['omega_k_0'] = 0
cosmo['omega_B_0']=0.049
cosmo['SIGMA8']=0.8344
zstart=50
zstart=0
astart=1/(1.+zstart)
if __name__=="__main__":
bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo), **cosmo)
#if __name__=="__main__":
# bic.write_icfiles(*bic.run_generation("initial_condition_borg.dat", 0.001, astart, **cosmo), **cosmo)

View File

@ -88,6 +88,8 @@ if (Boost_FOUND)
target_link_libraries(simple3DFilter ${tolink})
endif (Boost_FOUND)
add_executable(gadgetToDensity gadgetToDensity.cpp)
target_link_libraries(gadgetToDensity ${tolink})
IF (ENABLE_OPENMP)
add_executable(gadgetToDensity gadgetToDensity.cpp)
target_link_libraries(gadgetToDensity ${tolink})
ENDIF (ENABLE_OPENMP)

View File

@ -11,9 +11,12 @@ SET(CosmoTool_SRCS
miniargs.cpp
growthFactor.cpp
cosmopower.cpp
cic.cpp
)
IF (ENABLE_OPENMP)
set(CosmoTool_SRCS ${CosmoTool_SRCS} cic.cpp)
ENDIF (ENABLE_OPENMP)
IF(FOUND_NETCDF3)
SET(CosmoTool_SRCS ${CosmoTool_SRCS} yorick_nc3.cpp)
ELSE(FOUND_NETCDF3)

View File

@ -32,7 +32,7 @@ same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
+*/
#include <omp.h>
#include <assert.h>
#include <math.h>
#include <inttypes.h>
@ -60,89 +60,29 @@ void CICFilter::resetMesh()
void CICFilter::putParticles(CICParticles *particles, uint32_t N)
{
#if 0
uint32_t numCorners = 1 << NUMDIMS;
int threadUsed = omp_get_max_threads();
double *threadedDensity[threadUsed];
bool threadActivated[threadUsed];
uint32_t tUsedMin[threadUsed], tUsedMax[threadUsed];
for (uint32_t i = 0; i < N; i++)
{
Coordinates xyz;
int32_t ixyz[NUMDIMS];
int32_t rxyz[NUMDIMS];
CICType alpha[NUMDIMS];
CICType beta[NUMDIMS];
for (int j = 0; j < NUMDIMS; j++)
{
xyz[j] = (particles[i].coords[j] / spatialLen * szGrid);
ixyz[j] = (int32_t)floor(xyz[j] - 0.5);
beta[j] = xyz[j] - ixyz[j] - 0.5;
alpha[j] = 1 - beta[j];
if (ixyz[j] < 0)
ixyz[j] = szGrid-1;
}
for (int t = 0; t < threadUsed; t++)
{
threadedDensity[t] = new double[totalSize];
std::fill(threadedDensity[t], threadedDensity[t]+totalSize, 0);
}
CICType tot_mass = 0;
for (int j = 0; j < numCorners; j++)
{
CICType rel_mass = 1;
uint32_t idx = 0;
uint32_t mul = 1;
uint32_t mul2 = 1;
std::fill(threadActivated, threadActivated+threadUsed, false);
std::fill(tUsedMin, tUsedMin+threadUsed, totalSize);
std::fill(tUsedMax, tUsedMax+threadUsed, 0);
for (int k = 0; k < NUMDIMS; k++)
{
uint32_t ipos = ((j & mul2) != 0);
#pragma omp parallel
{
int thisThread = omp_get_thread_num();
double *dg = threadedDensity[thisThread];
if (ipos == 1)
{
rel_mass *= beta[k];
}
else
{
rel_mass *= alpha[k];
}
rxyz[k] = ixyz[k] + ipos;
if (rxyz[k] >= szGrid)
idx += (rxyz[k] - szGrid) * mul;
else
idx += rxyz[k] * mul;
mul2 *= 2;
mul *= szGrid;
}
assert(rel_mass > 0);
assert(rel_mass < 1);
assert(idx < totalSize);
densityGrid[idx] += rel_mass * particles[i].mass;
tot_mass += rel_mass;
}
assert(tot_mass < 1.1);
assert(tot_mass > 0.9);
}
#endif
#if 0
for (uint32_t i = 0; i < N; i++)
{
Coordinates xyz;
int32_t ixyz[NUMDIMS];
for (int j = 0; j < NUMDIMS; j++)
{
xyz[j] = (particles[i].coords[j] / spatialLen * szGrid);
ixyz[j] = (int32_t)round(xyz[j] - 0.5);
if (ixyz[j] < 0)
ixyz[j] = szGrid-1;
else if (ixyz[j] >= szGrid)
ixyz[j] = 0;
}
uint32_t idx = ixyz[0] + ixyz[1] * szGrid + ixyz[2] * szGrid * szGrid;
densityGrid[idx] += particles[i].mass;
}
#endif
threadActivated[thisThread] = true;
#pragma omp for schedule(static)
for (uint32_t i = 0; i < N; i++)
{
CICType x, y, z;
@ -193,44 +133,57 @@ void CICFilter::putParticles(CICParticles *particles, uint32_t N)
// 000
idx = ix + (iy + iz * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * beta_x * beta_y * beta_z;
// 100
idx = ix2 + (iy + iz * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * alpha_x * beta_y * beta_z;
// 010
idx = ix + (iy2 + iz * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * beta_x * alpha_y * beta_z;
// 110
idx = ix2 + (iy2 + iz * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * alpha_x * alpha_y * beta_z;
// 001
idx = ix + (iy + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * beta_x * beta_y * alpha_z;
// 101
idx = ix2 + (iy + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * alpha_x * beta_y * alpha_z;
// 011
idx = ix + (iy2 + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * beta_x * alpha_y * alpha_z;
// 111
idx = ix2 + (iy2 + iz2 * szGrid) * szGrid;
densityGrid[idx] +=
dg[idx] +=
mass * alpha_x * alpha_y * alpha_z;
tUsedMin[thisThread] = std::min(tUsedMin[thisThread], idx);
tUsedMax[thisThread] = std::max(tUsedMax[thisThread], idx);
}
}
for (int t = 0; t < threadUsed; t++)
{
if (!threadActivated[t])
continue;
#pragma omp parallel for schedule(static)
for (long p = tUsedMin[t]; p < tUsedMax[t]; p++)
densityGrid[p] += threadedDensity[t][p];
}
}
void CICFilter::getDensityField(CICType*& field, uint32_t& res)
@ -238,3 +191,4 @@ void CICFilter::getDensityField(CICType*& field, uint32_t& res)
field = densityGrid;
res = totalSize;
}