Added help strings and ksz support

This commit is contained in:
Guilhem Lavaux 2014-06-18 16:13:16 +02:00
parent ff01447ab6
commit 247d8512e4
7 changed files with 333 additions and 3 deletions

View file

@ -143,6 +143,10 @@ def interp3d(x not None, y not None,
z not None,
npx.ndarray[DTYPE_t, ndim=3] d not None, DTYPE_t Lbox,
bool periodic=False):
""" interp3d(x,y,z,d,Lbox,periodic=False) -> interpolated values
Compute the tri-linear interpolation of the given field (d) at the given position (x,y,z). It assumes that they are box-centered coordinates. So (x,y,z) == (0,0,0) is equivalent to the pixel at (Nx/2,Ny/2,Nz/2) with Nx,Ny,Nz = d.shape. If periodic is set, it assumes the box is periodic
"""
cdef npx.ndarray[DTYPE_t] out
cdef npx.ndarray[DTYPE_t] ax, ay, az
cdef int i

View file

@ -18,6 +18,7 @@ parser.add_argument('--maxval', type=float, default=60)
parser.add_argument('--depth_min', type=float, default=10)
parser.add_argument('--depth_max', type=float, default=60)
parser.add_argument('--iid', type=int, default=0)
parser.add_argument('--proj_cat', type=bool, default=False)
args = parser.parse_args()
INDATA="/nethome/lavaux/Copy/PlusSimulation/BORG/Input_Data/2m++.npy"
@ -61,8 +62,12 @@ for i in xrange(args.start,args.end,args.step):
plt.clf()
d = np.load(args.base_cic % i)
proj = build_sky_proj(1+d, dmin=args.depth_min,dmax=args.depth_max,iid=args.iid)
proj /= (args.depth_max-args.depth_min)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval, max=args.maxval)
hp.projscatter(b[idx], l[idx], lw=0, color='g', s=2.0, alpha=0.7)
hp.write_map("skymaps/proj_map_%d.fits" % i, proj)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.copper, title='Sample %d' % i, min=args.minval, max=args.maxval)
if args.proj_cat:
hp.projscatter(b[idx], l[idx], lw=0, color=[0.1,0.8,0.8], s=2.0, alpha=0.7)
ff.savefig(args.base_fig % i)

View file

@ -0,0 +1,138 @@
import healpy as hp
import numpy as np
import cosmotool as ct
import argparse
import h5py as h5
from matplotlib import pyplot as plt
import ksz
from ksz.constants import *
from cosmotool import interp3d
def wrapper_impulsion(f):
class _Wrapper(object):
def __init__(self):
pass
def __getitem__(self,direction):
if 'velocity' in f:
return f['velocity'][:,:,:,direction]
n = "p%d" % direction
return f[n]
return _Wrapper()
parser=argparse.ArgumentParser(description="Generate Skymaps from CIC maps")
parser.add_argument('--boxsize', type=float, required=True)
parser.add_argument('--Nside', type=int, default=128)
parser.add_argument('--base_h5', type=str, required=True)
parser.add_argument('--base_fig', type=str, required=True)
parser.add_argument('--start', type=int, required=True)
parser.add_argument('--end', type=int, required=True)
parser.add_argument('--step', type=int, required=True)
parser.add_argument('--minval', type=float, default=-0.5)
parser.add_argument('--maxval', type=float, default=0.5)
parser.add_argument('--depth_min', type=float, default=10)
parser.add_argument('--depth_max', type=float, default=60)
parser.add_argument('--iid', type=int, default=0)
parser.add_argument('--ksz_map', type=str, required=True)
args = parser.parse_args()
L = args.boxsize
Nside = args.Nside
def build_unit_vectors(N):
ii = np.arange(N)*L/N - 0.5*L
d = np.sqrt(ii[:,None,None]**2 + ii[None,:,None]**2 + ii[None,None,:]**2)
d[N/2,N/2,N/2] = 1
ux = ii[:,None,None] / d
uy = ii[None,:,None] / d
uz = ii[None,None,:] / d
return ux,uy,uz
def build_radial_v(v):
u = build_unit_vectors(N)
vr = v[0] * u[0]
vr += v[1] * u[1]
vr += v[2] * u[2]
return vr
def generate_from_catalog(vfield,Boxsize):
import progressbar as pbar
cat = np.load("2m++.npy")
profiler = KSZ_Isothermal(2.37)
cat['distance'] = cat['best_velcmb']
cat = cat[np.where((cat['distance']>100*dmin)*(cat['distance']<dmax*100))]
deg2rad = np.pi/180
xp,yp,zp = hp.pix2vec(Nside, np.arange(Npix))
N2 = np.sqrt(xp**2+yp**2+zp**2)
ksz_template = np.zeros(12*Nside**2, dtype=np.float64)
ksz_mask = np.zeros(12**Nside**2, dtype=np.uint8)
pb = pbar.ProgressBar(maxval = cat.size, widgets=[pb.Bar(), pb.ETA()]).start()
for k,i in np.ndenumerate(cat):
pb.update(k)
l,b=i['gal_long'],i['gal_lat']
l *= deg2rad
b *= deg2rad
x0 = np.cos(l)*np.cos(b)
y0 = np.sin(l)*np.cos(b)
z0 = np.sin(b)
DA =i['distance']/100
Lgal = DA**2*10**(0.4*(tmpp_cat['Msun']-i['K2MRS']+25))
idx0 = hp.query_disc(Nside, (x0,y0,z0), 3*rGalaxy/DA)
vr = interp3d(DA * x0, DA * y0, DA * z0, vfield, Boxsize)
xp1 = xp[idx0]
yp1 = yp[idx0]
zp1 = zp[idx0]
N2_1 = N2[idx0]
cos_theta = x0*xp1+y0*yp1+z0*zp1
cos_theta /= np.sqrt(x0**2+y0**2+z0**2)*(N2_1)
idx,idx_masked,m = profiler.projected_profile(cos_theta, DA)
idx = idx0[idx]
idx_masked = idx0[idx_masked]
ksz_template[idx] += vr * m
ksz_mask[idx_masked] = 0
pb.finish()
return ksz_template, ksz_mask
for i in xrange(args.start,args.end,args.step):
ff=plt.figure(1)
plt.clf()
v=[]
with h5.File(args.base_h5 % i, mode="r") as f:
p = wrapper_impulsion(f)
v.append(p[i] / f['density'][:])
# Rescale by Omega_b / Omega_m
vr = build_radial_v(v)
vr *= -ksz_normalization*rho_mean_matter*1e6
del v
proj = generate_from_catalog(vfield,Boxsize)
hp.write_map(args.ksz_map % i, proj)
hp.mollview(proj, fig=1, coord='CG', cmap=plt.cm.coolwarm, title='Sample %d' % i, min=args.minval,
max=args.maxval)
ff.savefig(args.base_fig % i)

View file

@ -32,7 +32,7 @@ args = parser.parse_args()
for i in xrange(args.start, args.end, args.step):
print i
# pos,_,density,N,L,_ = bic.run_generation("/nethome/lavaux/remote/borg_2m++_128/initial_density_%d.dat" % i, 0.001, astart, cosmo, supersample=2, do_lpt2=True)
pos,_,density,N,L,_ = bic.run_generation("%s/initial_density_%d.dat" % (args.base,i), 0.001, astart,
pos,_,density,N,L,_,_ = bic.run_generation("%s/initial_density_%d.dat" % (args.base,i), 0.001, astart,
cosmo, supersample=args.supersample, do_lpt2=True)
dcic = ct.cicParticles(pos, L, args.N)

View file

@ -0,0 +1,3 @@
from .constants import *
from .gal_prof import KSZ_Profile, KSZ_Isothermal, KSZ_NFW

View file

@ -0,0 +1,31 @@
import numpy as np
Mpc=3.08e22
rhoc = 1.8864883524081933e-26 # m^(-3)
sigmaT = 6.6524e-29
mp = 1.6726e-27
lightspeed = 299792458.
v_unit = 1e3 # Unit of 1 km/s
T_cmb=2.725
h = 0.71
Y = 0.245 #The Helium abundance
Omega_matter = 0.26
Omega_baryon=0.0445
G=6.67e-11
MassSun=2e30
frac_electron = 1.0 # Hmmmm
frac_gas_galaxy = 0.14
mu = 1/(1-0.5*Y)
tmpp_cat={'Msun':3.29,'alpha':-0.7286211634758224,'Mstar':-23.172904033796893,'PhiStar':0.0113246633636846,'lbar':393109973.22508669}
baryon_fraction = Omega_baryon / Omega_matter
ksz_normalization = T_cmb*sigmaT*v_unit/(lightspeed*mu*mp) * baryon_fraction
rho_mean_matter = Omega_matter * (3*(100e3/Mpc)**2/(8*np.pi*G))
Lbar = tmpp_cat['lbar'] / Mpc**3
M_over_L_galaxy = rho_mean_matter / Lbar
del np

View file

@ -0,0 +1,149 @@
from .constants import *
# -----------------------------------------------------------------------------
# Generic profile generator
# -----------------------------------------------------------------------------
class KSZ_Profile(object):
R_star= 0.050 # 15 kpc/h
L_gal0 = 10**(0.4*(tmpp_cat['Msun']-tmpp_cat['Mstar']))
def __init__(self):
self.rGalaxy = 1.0
def evaluate_profile(r):
raise NotImplementedError("Abstract function")
def projected_profile(cos_theta,angularDistance):
idx = np.where(cos_theta > 0)[0]
tan_theta_2 = 1/(cos_theta[idx]**2) - 1
tan_theta_2_max = (self.rGalaxy/angularDistance)**2
tan_theta_2_min = (R_star/angularDistance)**2
idx0 = np.where((tan_theta_2 < tan_theta_2_max))
idx = idx[idx0]
tan_theta_2 = tan_theta_2[idx0]
tan_theta = np.sqrt(tan_theta_2)
r = (tan_theta*DA)
m,idx_mask = self.evaluate_profile(r)
idx_mask = np.append(idx_mask,np.where(tan_theta_2<tan_theta_2_min)[0])
idx_mask = np.append(idx_mask,[tan_theta_2.argmin()])
return idx,idx_mask,m
# -----------------------------------------------------------------------------
# Isothermal profile generator
# -----------------------------------------------------------------------------
class KSZ_Isothermal(KSZ_Profile):
sigma_FP=160e3 #m/s
R_innergal = 0.226
def __init__(self, Lgal, x, y=0.0):
"Support for Isothermal profile"
super(KSZ_Isothermal,self).__init__()
self.R_gal = 0.226 * x
self.R_innergal *= y
self.rho0 = self.sigma_FP**2/(2*np.pi*G) # * (Lgal/L_gal0)**(2./3)
self.rGalaxy = self.R_gal*(Lgal/self.L_gal0)**(1./3)
self.rInnerGalaxy = self.R_innergal*(Lgal/self.L_gal0)**(1./3)
# self._prepare()
def _prepare(self, x_min, x_max):
from scipy.integrate import quad
from numpy import sqrt, log10
lmin = log10(x_min)
lmax = log10(x_max)
x = 10**(np.arange(100)*(lmax-lmin)/100.+lmin)
profile = np.empty(x.size)
nu_tilde = lambda u: (1/(u**2*(1+u)))
for i in range(x.size):
profile[i] = 2*quad(lambda y: (nu_tilde(sqrt(x[i]**2+y**2))), 0, args.x)[0]
self._table = x,profile
def evaluate_profile(r):
rho0, rGalaxy, rInner = self.rho0, self.rGalaxy, self.rInnerGalaxy
Q=rho0*2/r*np.arctan(np.sqrt((rGalaxy/r)**2 - 1))/Mpc
# Q[r<rInner] = 0
return Q,np.where(r<rInner)[0]
# -----------------------------------------------------------------------------
# NFW profile generator
# -----------------------------------------------------------------------------
class KSZ_NFW(KSZ_Profile):
""" Support for NFW profile
"""
def __init__(self,x,y=0.0):
from numpy import log, pi
if 'pre_nfw' not in self:
self._prepare()
kiso = KSZ_Isothermal(x,y)
r_is = kiso.rGalaxy
rho_is = kiso.rho0
r_inner = kiso.rInnerGalaxy
self.Mgal = rho_is*4*pi*(r_is/args.x)*Mpc #Lgal*M_over_L_galaxy
self.Rvir = r_is/x
cs = self._get_concentration(Mgal)
self.rs = Rvir/cs
b = (log(1.+cs)-cs/(1.+cs))
self.rho_s = Mgal/(4*pi*b*(rs*Mpc)**3)
def _prepare(self, _x_min=1e-4, _x_max=1e4):
from scipy.integrate import quad
from numpy import sqrt, log10
from scipy.interpolate import interp1d
lmin = log10(x_min)
lmax = log10(x_max)
x = 10**(np.arange(100)*(lmax-lmin)/100.+lmin)
profile = np.empty(x.size)
nu_tilde = lambda u: (1/(u*(1+u)**2))
for i in range(x.size):
if x[i] < args.x:
profile[i] = 2*quad(lambda y: (nu_tilde(sqrt(x[i]**2+y**2))), 0, np.sqrt((args.x)**2-x[i]**2))[0]
else:
profile[i] = 0
# Insert the interpolator into the class definition
KSZ_NFW.pre_nfw = self.pre_nfw = interp1d(x,prof)
def _get_concentration(self, Mvir):
from numpy import exp, log
return exp(0.971 - 0.094*log(Mvir/(1e12*MassSun)))
def evaluate_profile(r):
cs = self._get_concentration(self.Mvir)
rs = self.Rvir/cs
return self.rho_s*rs*Mpc*self.pre_nfw(r/rs),np.array([],dtype=int)