cosmotool/src/fourier/euclidian.hpp

504 lines
13 KiB
C++
Raw Normal View History

#ifndef __COSMOTOOL_FOURIER_EUCLIDIAN_HPP
#define __COSMOTOOL_FOURIER_EUCLIDIAN_HPP
#include <boost/function.hpp>
#include <vector>
#include <boost/shared_ptr.hpp>
#include <gsl/gsl_randist.h>
#include "base_types.hpp"
#include "fft/fftw_calls.hpp"
#include "../algo.hpp"
namespace CosmoTool
{
template<typename T>
class EuclidianSpectrum_1D: public SpectrumFunction<T>
{
public:
typedef boost::function1<T, T> Function;
protected:
Function f;
public:
typedef typename SpectrumFunction<T>::FourierMapType FourierMapType;
typedef boost::shared_ptr<FourierMapType> ptr_map;
EuclidianSpectrum_1D(Function P)
: f(P)
{
}
void newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const;
void mul(FourierMapType& m) const;
void mul_sqrt(FourierMapType& m) const;
void mul_inv(FourierMapType& m) const;
void mul_inv_sqrt(FourierMapType& m) const;
};
template<typename T>
class EuclidianFourierMapBase: public FourierMap<T>
{
public:
typedef std::vector<int> DimArray;
private:
boost::shared_ptr<T> m_data;
DimArray m_dims;
long m_size;
public:
EuclidianFourierMapBase(boost::shared_ptr<T> indata, const DimArray& indims)
{
m_data = indata;
m_dims = indims;
m_size = 1;
for (int i = 0; i < m_dims.size(); i++)
m_size *= m_dims[i];
}
virtual ~EuclidianFourierMapBase()
{
}
const DimArray& getDims() const { return m_dims; }
virtual const T *data() const { return m_data.get(); }
virtual T *data() { return m_data.get(); }
virtual long size() const { return m_size; }
virtual FourierMap<T> *copy() const
{
FourierMap<T> *m = this->mimick();
m->eigen() = this->eigen();
return m;
}
};
template<typename T>
class EuclidianFourierMapReal: public EuclidianFourierMapBase<T>
{
public:
typedef typename EuclidianFourierMapBase<T>::DimArray DimArray;
EuclidianFourierMapReal(boost::shared_ptr<T> indata, const DimArray& indims)
: EuclidianFourierMapBase<T>(indata, indims)
{}
virtual FourierMap<T> *mimick() const
{
return new EuclidianFourierMapReal<T>(
boost::shared_ptr<T>((T *)fftw_malloc(sizeof(T)*this->size()),
std::ptr_fun(fftw_free)),
this->getDims());
}
virtual T dot_product(const FourierMap<T>& other) const
throw(std::bad_cast)
{
const EuclidianFourierMapReal<T>& m2 = dynamic_cast<const EuclidianFourierMapReal<T>&>(other);
if (this->size() != m2.size())
throw std::bad_cast();
return (this->eigen()*m2.eigen()).sum();
}
};
template<typename T>
class EuclidianFourierMapComplex: public EuclidianFourierMapBase<std::complex<T> >
{
protected:
typedef boost::shared_ptr<std::complex<T> > ptr_t;
std::vector<double> delta_k;
int m_dim0;
bool even0, alleven;
long plane_size;
public:
typedef typename EuclidianFourierMapBase<std::complex<T> >::DimArray DimArray;
EuclidianFourierMapComplex(ptr_t indata,
int dim0,
const DimArray& indims,
const std::vector<double>& dk)
: EuclidianFourierMapBase<std::complex<T> >(indata, indims), delta_k(dk), m_dim0(dim0), even0((dim0 % 2)==0)
{
assert(dk.size() == indims.size());
plane_size = 1;
alleven = true;
for (int q = 1; q < indims.size(); q++)
{
plane_size *= indims[q];
alleven = alleven && ((indims[q]%2)==0);
}
}
virtual FourierMap<std::complex<T> > *mimick() const
{
return
new EuclidianFourierMapComplex<T>(
ptr_t((std::complex<T> *)
fftw_malloc(sizeof(std::complex<T>)*this->size()),
std::ptr_fun(fftw_free)),
m_dim0,
this->getDims(),
this->delta_k);
}
template<typename Array>
double get_K(const Array& ik)
{
const DimArray& dims = this->getDims();
assert(ik.size() == dims.size());
double k2 = 0;
k2 += CosmoTool::square(ik[0]*delta_k[0]);
for (int q = 1; q < ik.size(); q++)
{
int dk = ik[q];
if (dk > dims[q]/2)
dk = dk - dims[q];
k2 += CosmoTool::square(delta_k[q]*dk);
}
return std::sqrt(k2);
}
double get_K(long p)
{
const DimArray& dims = this->getDims();
DimArray d(delta_k.size());
for (int q = 0; q < d.size(); q++)
{
d[q] = p%dims[q];
p = (p-d[q])/dims[q];
}
return get_K(d);
}
bool allDimensionsEven() const { return alleven; }
bool firstDimensionEven() const { return even0; }
virtual std::complex<T> dot_product(const FourierMap<std::complex<T> >& other) const
throw(std::bad_cast)
{
const EuclidianFourierMapComplex<T>& m2 = dynamic_cast<const EuclidianFourierMapComplex<T>&>(other);
if (this->size() != m2.size())
throw std::bad_cast();
const std::complex<T> *d1 = this->data();
const std::complex<T> *d2 = m2.data();
const DimArray& dims = this->getDims();
int N0 = dims[0] + (even0 ? 0 : 1);
std::complex<T> result = 0;
for (long q0 = 1; q0 < N0-1; q0++)
{
for (long p = 0; p < plane_size; p++)
{
2012-11-11 19:30:41 +01:00
long idx = q0+dims[0]*p;
assert(idx < this->size());
result += 2*(conj(d1[idx]) * d2[idx]).real();
}
}
if (even0)
{
for (long p = 0; p < plane_size; p++)
{
long q0 = N0*p, q1 = (p+1)*N0-1;
result += conj(d1[q0]) * d2[q0];
result += conj(d1[q1]) * d2[q1];
}
}
return result;
}
};
template<typename T>
class EuclidianFourierTransform: public FourierTransform<T>
{
public:
typedef typename EuclidianFourierMapBase<T>::DimArray DimArray;
private:
typedef FFTW_Calls<T> calls;
EuclidianFourierMapReal<T> *realMap;
EuclidianFourierMapComplex<T> *fourierMap;
typename calls::plan_type m_analysis, m_synthesis;
double volume;
long N, Nc;
DimArray m_dims, m_dims_hc;
std::vector<double> m_L;
public:
EuclidianFourierTransform(const DimArray& dims, const std::vector<double>& L)
{
assert(L.size() == dims.size());
std::vector<double> dk(L.size());
std::vector<int> swapped_dims(dims.size());
m_dims = dims;
m_dims_hc = dims;
m_dims_hc[0] = dims[0]/2+1;
m_L = L;
N = 1;
Nc = 1;
volume = 1;
for (int i = 0; i < dims.size(); i++)
{
N *= dims[i];
Nc *= m_dims_hc[i];
volume *= L[i];
dk[i] = 2*M_PI/L[i];
swapped_dims[dims.size()-1-i] = dims[i];
}
realMap = new EuclidianFourierMapReal<T>(
boost::shared_ptr<T>(calls::alloc_real(N),
std::ptr_fun(calls::free)),
m_dims);
fourierMap = new EuclidianFourierMapComplex<T>(
boost::shared_ptr<std::complex<T> >((std::complex<T>*)calls::alloc_complex(Nc),
std::ptr_fun(calls::free)),
dims[0], m_dims_hc, dk);
m_analysis = calls::plan_dft_r2c(dims.size(), &swapped_dims[0],
realMap->data(), (typename calls::complex_type *)fourierMap->data(),
FFTW_DESTROY_INPUT|FFTW_MEASURE);
m_synthesis = calls::plan_dft_c2r(dims.size(), &swapped_dims[0],
(typename calls::complex_type *)fourierMap->data(), realMap->data(),
FFTW_DESTROY_INPUT|FFTW_MEASURE);
}
virtual ~EuclidianFourierTransform()
{
delete realMap;
delete fourierMap;
calls::destroy_plan(m_synthesis);
calls::destroy_plan(m_analysis);
}
void synthesis()
{
calls::execute(m_synthesis);
realMap->scale(1/volume);
}
void analysis()
{
calls::execute(m_analysis);
fourierMap->scale(volume/N);
}
void synthesis_conjugate()
{
calls::execute(m_analysis);
fourierMap->scale(1/volume);
}
void analysis_conjugate()
{
calls::execute(m_synthesis);
realMap->scale(volume/N);
}
const FourierMap<std::complex<T> >& fourierSpace() const
{
return *fourierMap;
}
FourierMap<std::complex<T> >& fourierSpace()
{
return *fourierMap;
}
const FourierMap<T>& realSpace() const
{
return *realMap;
}
FourierMap<T>& realSpace()
{
return *realMap;
}
FourierTransform<T> *mimick() const
{
return new EuclidianFourierTransform(m_dims, m_L);
}
};
template<typename T>
class EuclidianFourierTransform_1d: public EuclidianFourierTransform<T>
{
private:
template<typename T2>
static std::vector<T2> make_1d_vector(T2 a)
{
T2 arr[2] = { a};
return std::vector<T2>(&arr[0],&arr[1]);
}
public:
EuclidianFourierTransform_1d(int Nx, double Lx)
: EuclidianFourierTransform<T>(make_1d_vector<int>(Nx), make_1d_vector<double>(Lx))
{
}
virtual ~EuclidianFourierTransform_1d() {}
};
template<typename T>
class EuclidianFourierTransform_2d: public EuclidianFourierTransform<T>
{
private:
template<typename T2>
static std::vector<T2> make_2d_vector(T2 a, T2 b)
{
T2 arr[2] = { a, b};
return std::vector<T2>(&arr[0], &arr[2]);
}
public:
EuclidianFourierTransform_2d(int Nx, int Ny, double Lx, double Ly)
: EuclidianFourierTransform<T>(make_2d_vector<int>(Nx, Ny), make_2d_vector<double>(Lx, Ly))
{
}
virtual ~EuclidianFourierTransform_2d() {}
};
template<typename T>
class EuclidianFourierTransform_3d: public EuclidianFourierTransform<T>
{
private:
template<typename T2>
static std::vector<T2> make_3d_vector(T2 a, T2 b, T2 c)
{
T2 arr[2] = { a, b, c};
return std::vector<T2>(&arr[0], &arr[3]);
}
public:
EuclidianFourierTransform_3d(int Nx, int Ny, int Nz, double Lx, double Ly, double Lz)
: EuclidianFourierTransform<T>(make_3d_vector<int>(Nx, Ny, Nz), make_3d_vector<double>(Lx, Ly, Lz))
{
}
virtual ~EuclidianFourierTransform_3d() {}
};
template<typename T>
void EuclidianSpectrum_1D<T>::newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const
{
typedef EuclidianFourierMapComplex<T> MapT;
typedef typename EuclidianSpectrum_1D<T>::ptr_map ptr_map;
typedef typename MapT::DimArray DimArray;
MapT& rand_map = dynamic_cast<MapT&>(out_map);
std::complex<T> *d = rand_map.data();
long idx;
const DimArray& dims = rand_map.getDims();
long plane_size;
bool alleven = rand_map.allDimensionsEven();
for (long p = 1; p < rand_map.size(); p++)
{
double A_k = std::sqrt(0.5*f(rand_map.get_K(p)));
d[p] = std::complex<T>(gsl_ran_gaussian(rng, A_k),
gsl_ran_gaussian(rng, A_k));
}
// Generate the mean value
d[0] = std::complex<T>(gsl_ran_gaussian(rng, std::sqrt(f(0))), 0);
if (!rand_map.firstDimensionEven())
return;
// Correct the Nyquist plane
idx = dims[0]-1; // Stick to the last element of the first dimension
d[idx] = std::complex<T>(d[idx].real() + d[idx].imag(), 0);
// 1D is special case
if (dims.size() == 1)
return;
plane_size = 1;
for (int q = 1; q < dims.size(); q++)
{
plane_size *= dims[q];
}
for (long p = 1; p < plane_size/2; p++)
{
long q = (p+1)*dims[0]-1;
long q2 = (plane_size-p+1)*dims[0]-1;
assert(q < plane_size*dims[0]);
assert(q2 < plane_size*dims[0]);
d[q] = conj(d[q2]);
}
if (alleven)
{
long q = 0;
for (int i = dims.size()-1; i >= 1; i--)
q = dims[i]*q + dims[i]/2;
q += dims[0]-1;
d[q] = std::complex<T>(d[q].real()+d[q].imag(),0);
}
}
template<typename T>
void EuclidianSpectrum_1D<T>::mul(FourierMapType& m) const
{
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
std::complex<T> *d = m.data();
for (long p = 0; p < m_c.size(); p++)
d[p] *= f(m_c.get_K(p));
}
template<typename T>
void EuclidianSpectrum_1D<T>::mul_sqrt(FourierMapType& m) const
{
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
std::complex<T> *d = m.data();
for (long p = 0; p < m_c.size(); p++)
d[p] *= std::sqrt(f(m_c.get_K(p)));
}
template<typename T>
void EuclidianSpectrum_1D<T>::mul_inv(FourierMapType& m) const
{
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
std::complex<T> *d = m.data();
for (long p = 0; p < m_c.size(); p++)
{
T A = f(m_c.get_K(p));
if (A==0)
d[p] = 0;
else
d[p] /= A;
}
}
template<typename T>
void EuclidianSpectrum_1D<T>::mul_inv_sqrt(FourierMapType& m) const
{
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
std::complex<T> *d = m.data();
for (long p = 0; p < m_c.size(); p++)
{
T A = std::sqrt(f(m_c.get_K(p)));
if (A == 0)
d[p] = 0;
else
d[p] /= A;
}
}
};
#endif