cosmotool/src/fourier/healpix.hpp

231 lines
6.0 KiB
C++
Raw Normal View History

#ifndef __COSMOTOOL_FOURIER_HEALPIX_HPP
#define __COSMOTOOL_FOURIER_HEALPIX_HPP
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include <cmath>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <exception>
#include <sharp_cxx.h>
namespace CosmoTool
{
template<typename T>
class HealpixSpectrum: public FourierSpectrum<T>
{
protected:
std::vector<T> cls;
public:
typedef typename FourierSpectrum<T>::FourierMapType FourierMapType;
HealpixSpectrum(long Lmax)
: cls(Lmax+1) {}
T *data() { return &cls[0]; }
const T *data() const { return &cls[0]; }
long size() const { return cls.size(); }
boost::shared_ptr<FourierMapType>
newRandomFourier(gsl_rng *rng, const FourierMapType& like_map) const = 0;
};
template<typename T>
class HealpixFourierMap: public FourierMap<T>
{
private:
T *m_data;
long Npix, Nside;
Eigen::aligned_allocator<T> alloc;
public:
HealpixFourierMap(long nSide)
: Npix(12*nSide*nSide), Nside(nSide)
{
m_data = alloc.allocate(Npix);
}
virtual ~HealpixFourierMap()
{
alloc.deallocate(m_data);
}
virtual const T* data() const { return m_data; }
virtual T *data() { return m_data; }
virtual long size() const { return Npix; }
virtual T dot_product(const FourierMap<T>& other) const
throw(std::bad_cast)
{
const HealpixFourierMap<T>& mfm = dynamic_cast<const HealpixFourierMap<T>&>(other);
if (Npix() != mfm.Npix())
throw std::bad_cast();
MapType m1(m_data, Npix);
MapType m2(mfm.m_data, mfm.Npix);
return (m1*m2).sum();
}
virtual FourierMap<T> *mimick() const
{
return new HealpixFourierMap<T>(Nside);
}
};
template<typename T>
class HealpixFourierALM: public FourierMap<std::complex<T> >
{
private:
std::complex<T> *alms;
long size;
long Lmax_, Mmax_, TVal_;
Eigen::aligned_allocator<std::complex<T> > alloc;
public:
typedef unsigned long LType;
LType Lmax() const { return Lmax_; }
LType Mmax() const { return Mmax_; }
LType Num_Alms() const
{
return ((Mmax_+1)*(Mmax_+2))/2 + (Mmax_+1)*(Lmax_-Mmax_);
}
LType index_l0(LType m) const
{
return ((m*(TVal_-m))/2);
}
LType index(LType l, LType m) const
{
return index_l0(m) + l;
}
HealpixFourierALM(LType lmax, LType mmax)
: Lmax_(lmax), Mmax_(mmax), TVal_(2*lmax+1)
{
size = Num_Alms();
alms = alloc.allocate(size);
}
virtual ~HealpixFourierALM()
{
alloc.deallocate(alms);
}
virtual const T* data() const { return alms; }
virtual T * data() { return alms;}
virtual long size() const { return size; }
virtual FourierMap<std::complex<T> > *mimick() const
{
return new HealpixFourierALM<T>(Lmax_, Mmax_);
}
virtual std::complex<T> dot_product(const FourierMap<std::complex<T> >& other) const
throw(std::bad_cast)
{
const HealpixFourierALM<T>& mfm = dynamic_cast<const HealpixFourierALM<T>&>(other);
std::complex<T> S;
if (size != mfm.size)
throw std::bad_cast();
MapType m1(m_data, Npix);
MapType m2(mfm.m_data, mfm.Npix);
S = (m1.block(0,0,1,Lmax_+1).adjoint() * m2(0,0,1,Lmax_+1)).sum();
S += 2*(m1.block(0,1+Lmax_,1,size-1-Lmax_).adjoint() * m2(0,1+Lmax_,1,size-1-Lmax_)).sum();
return S;
}
};
template<typename T>
class HealpixFourierTransform: public FourierTransform<T>, public sharp_base
{
private:
HealpixFourierMap<T> realMap;
HealpixFourierALM<T> fourierMap;
public:
HealpixFourierTransform(long nSide, long Lmax, long Mmax)
: realMap(nSide), fourierMap(Lmax, Mmax)
{
set_Healpix_geometry(nSide);
set_triangular_alm_info(Lmax, Mmax);
}
virtual ~HealpixFourierTransform() {}
virtual const FourierMap<std::complex<T> >& fourierSpace() const { return fourierMap; }
virtual FourierMap<std::complex<T> >& fourierSpace() { return fourierMap; }
virtual const FourierMap<T>& realSpace() const { return realMap; }
virtual FourierMap<T>& realSpace() { return realMap; }
virtual FourierTransform<T> *mimick() const
{
return new HealpixFourierTransform<T>(realMap.Nside, fourierMap.Lmax, fourierMap.Mmax);
}
virtual void analysis()
{
void *aptr=reinterpret_cast<void *>(fourierMap.data()), *mptr=reinterpret_cast<void *>(realMap.data());
sharp_execute (SHARP_MAP2ALM, 0, 0, &aptr, &mptr, ginfo, ainfo, 1,
cxxjobhelper__<T>::val,0,0,0);
}
virtual void synthesis()
{
void *aptr=reinterpret_cast<void *>(fourierMap.data()), *mptr=reinterpret_cast<void *>(realMap.data());
sharp_execute (SHARP_ALM2MAP, 0, 0, &aptr, &mptr, ginfo, ainfo, 1,
cxxjobhelper__<T>::val,0,0,0);
}
virtual void analysis_conjugate()
{
synthesis();
realMap.scale(4*M_PI/realMap.Npix());
}
virtual void synthesis_conjugate()
{
analysis();
fourierMap.scale(realMap.Npix()/(4*M_PI));
}
};
template<typename T>
boost::shared_ptr<HealpixSpectrum<T>::FourierMapType>
HealpixSpectrum<T>::newRandomFourier(gsl_rng *rng, const FourierMapType& like_map) const
{
const HealpixFourierALM<T>& alms = dynamic_cast<const HealpixFourierALM<T>&>(like_map);
HealpixFourierALM<T> *new_alms;
boost::shared_ptr<FourierMapType> r(new_alms = new HealpixFourierALM<T>(alms.Lmax(), alms.Mmax()));
long lmaxGen = std::min(cls.size()-1, alms.Lmax());
std::complex<T> *new_data = new_alms->data();
for (long l = 0; l < lmaxGen; l++)
{
double Al = std::sqrt(cls[l]);
new_data[alms.index(l,0)] = gsl_ran_gaussian(rng, Al);
Al *= M_SQRT1_2;
for (long m = 1; m < alms.Mmax(); m++)
{
std::complex<T>& c = new_data[alms.index(l,m)];
c.real() = gsl_ran_gaussian(rng, Al);
c.imag() = gsl_ran_gaussian(rng, Al);
}
}
return r;
}
};
#endif