68 lines
1.6 KiB
C
68 lines
1.6 KiB
C
|
/* Function adapted from GNU GSL file glfixed.c
|
||
|
Original author: Pavel Holoborodko (http://www.holoborodko.com)
|
||
|
|
||
|
Adjustments by M. Reinecke
|
||
|
- adjusted interface (keep epsilon internal, return full number of points)
|
||
|
- removed precomputed tables
|
||
|
- tweaked Newton iteration to obtain higher accuracy */
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "sharp_legendre_roots.h"
|
||
|
#include "c_utils.h"
|
||
|
|
||
|
static inline double one_minus_x2 (double x)
|
||
|
{ return (fabs(x)>0.1) ? (1.+x)*(1.-x) : 1.-x*x; }
|
||
|
|
||
|
void sharp_legendre_roots(int n, double *x, double *w)
|
||
|
{
|
||
|
const double pi = 3.141592653589793238462643383279502884197;
|
||
|
const double eps = 3e-14;
|
||
|
int m = (n+1)>>1;
|
||
|
|
||
|
double t0 = 1 - (1-1./n) / (8.*n*n);
|
||
|
double t1 = 1./(4.*n+2.);
|
||
|
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
int i;
|
||
|
#pragma omp for schedule(dynamic,100)
|
||
|
for (i=1; i<=m; ++i)
|
||
|
{
|
||
|
double x0 = cos(pi * ((i<<2)-1) * t1) * t0;
|
||
|
|
||
|
int dobreak=0;
|
||
|
int j=0;
|
||
|
double dpdx;
|
||
|
while(1)
|
||
|
{
|
||
|
double P_1 = 1.0;
|
||
|
double P0 = x0;
|
||
|
double dx, x1;
|
||
|
|
||
|
for (int k=2; k<=n; k++)
|
||
|
{
|
||
|
double P_2 = P_1;
|
||
|
P_1 = P0;
|
||
|
// P0 = ((2*k-1)*x0*P_1-(k-1)*P_2)/k;
|
||
|
P0 = x0*P_1 + (k-1.)/k * (x0*P_1-P_2);
|
||
|
}
|
||
|
|
||
|
dpdx = (P_1 - x0*P0) * n / one_minus_x2(x0);
|
||
|
|
||
|
/* Newton step */
|
||
|
x1 = x0 - P0/dpdx;
|
||
|
dx = x0-x1;
|
||
|
x0 = x1;
|
||
|
if (dobreak) break;
|
||
|
|
||
|
if (fabs(dx)<=eps) dobreak=1;
|
||
|
UTIL_ASSERT(++j<100,"convergence problem");
|
||
|
}
|
||
|
|
||
|
x[i-1] = -x0;
|
||
|
x[n-i] = x0;
|
||
|
w[i-1] = w[n-i] = 2. / (one_minus_x2(x0) * dpdx * dpdx);
|
||
|
}
|
||
|
} // end of parallel region
|
||
|
}
|