cosmotool/sample/simple3DFilter.cpp

194 lines
4.7 KiB
C++
Raw Normal View History

#include <cassert>
#include <CosmoTool/yorick.hpp>
#include <CosmoTool/sphSmooth.hpp>
#include <CosmoTool/mykdtree.hpp>
#include <CosmoTool/miniargs.hpp>
using namespace std;
using namespace CosmoTool;
#define N_SPH 16
struct VCoord{
float v[3];
};
template<int i>
ComputePrecision getVelocity(const VCoord& v)
{
return v.v[i];
}
ComputePrecision getUnity(const VCoord& v)
{
return 1.0;
}
typedef SPHSmooth<VCoord> MySmooth;
typedef MySmooth::SPHTree MyTree;
typedef MyTree::Cell MyCell;
int main(int argc, char **argv)
{
char *fname1, *fname2;
double rLimit, boxsize, rLimit2, cx, cy, cz;
int Nres;
MiniArgDesc args[] = {
{ "INPUT DATA1", &fname1, MINIARG_STRING },
{ "RADIUS LIMIT", &rLimit, MINIARG_DOUBLE },
{ "BOXSIZE", &boxsize, MINIARG_DOUBLE },
{ "RESOLUTION", &Nres, MINIARG_INT },
{ "CX", &cx, MINIARG_DOUBLE },
{ "CY", &cy, MINIARG_DOUBLE },
{ "CZ", &cz, MINIARG_DOUBLE },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, args))
return 1;
float *v1_data;
uint32_t *dimList;
uint32_t rank;
uint32_t N1_points, N2_points;
int *bins = new int[Nres*Nres*Nres];
rLimit2 = rLimit*rLimit;
loadArray(fname1, v1_data, dimList, rank);
assert(rank == 2);
assert(dimList[1] == 6);
N1_points = dimList[0];
delete[] dimList;
cout << "Got " << N1_points << " in the first file." << endl;
MyCell *allCells_1 = new MyCell[N1_points];
for (long i = 0; i < Nres*Nres*Nres; i++)
bins[i] = 0;
cout << "Shuffling data in cells..." << endl;
for (int i = 0 ; i < N1_points; i++)
{
for (int j = 0; j < 3; j++)
allCells_1[i].coord[j] = v1_data[i*6 + j];
for (int k = 0; k < 3; k++)
allCells_1[i].val.pValue.v[k] = v1_data[i*6 + 3 + k];
allCells_1[i].active = true;
allCells_1[i].val.weight = 0.0;
long rx = floor((allCells_1[i].coord[0]+cx)*Nres/boxsize+0.5);
long ry = floor((allCells_1[i].coord[1]+cy)*Nres/boxsize+0.5);
long rz = floor((allCells_1[i].coord[2]+cz)*Nres/boxsize+0.5);
if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres)
continue;
bins[rx + ry*Nres + rz*Nres*Nres]++;
}
delete[] v1_data;
uint32_t dims[3] = { Nres, Nres, Nres } ;
saveArray("num_in_cell.nc", bins, dims, 3);
cout << "Building trees..." << endl;
MyTree tree1(allCells_1, N1_points);
cout << "Creating smoothing filter..." << endl;
MySmooth smooth1(&tree1, N_SPH);
uint32_t outDimList[3] = { Nres, Nres, Nres };
uint32_t outDimList2[4] = { 3, Nres, Nres, Nres };
ProgressiveOutput<float> out_den_1 =
ProgressiveOutput<float>::saveArrayProgressive("density.nc", outDimList, 3);
ProgressiveOutput<float> out_vel_1 =
ProgressiveOutput<float>::saveArrayProgressive("v3d.nc", outDimList2, 4);
ProgressiveOutput<float> out_rad_1 =
ProgressiveOutput<float>::saveArrayProgressive("rad.nc", outDimList, 3);
cout << "Weighing..." << endl;
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
cout << rz << " / " << Nres << endl;
for (int ry = 0; ry < Nres; ry++)
{
double py = (ry)*boxsize/Nres-cy;
for (int rx = 0; rx < Nres; rx++)
{
double px = (rx)*boxsize/Nres-cx;
MyTree::coords c = { px, py, pz };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
if (r2 > rLimit2)
{
continue;
}
uint32_t numInCell = bins[rx + Nres*ry + Nres*Nres*rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
smooth1.addGridSite(c);
}
}
}
cout << "Interpolating..." << endl;
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
cout << rz << " / " << Nres << endl;
for (int ry = 0; ry < Nres; ry++)
{
double py = (ry)*boxsize/Nres-cy;
for (int rx = 0; rx < Nres; rx++)
{
double px = (rx)*boxsize/Nres-cx;
MyTree::coords c = { px, py, pz };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
if (r2 > rLimit2)
{
out_vel_1.put(0);
out_vel_1.put(0);
out_vel_1.put(0);
out_den_1.put(0);
out_rad_1.put(0);
continue;
}
uint32_t numInCell = bins[rx + ry*Nres + rz*Nres*Nres];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
float val;
out_rad_1.put(smooth1.getSmoothingLen());
val = smooth1.computeSmoothedValue(c, getVelocity<0>);
out_vel_1.put(val);
val = smooth1.computeSmoothedValue(c, getVelocity<1>);
out_vel_1.put(val);
val = smooth1.computeSmoothedValue(c, getVelocity<2>);
out_vel_1.put(val);
val = smooth1.computeSmoothedValue(c, getUnity);
out_den_1.put(val);
}
}
}
return 0;
};