257 lines
8.4 KiB
Cython
257 lines
8.4 KiB
Cython
|
import numpy as np
|
||
|
|
||
|
__all__ = ['legendre_transform', 'legendre_roots', 'sht', 'synthesis', 'adjoint_synthesis',
|
||
|
'analysis', 'adjoint_analysis', 'healpix_grid', 'triangular_order', 'rectangular_order',
|
||
|
'packed_real_order']
|
||
|
|
||
|
|
||
|
def legendre_transform(x, bl, out=None):
|
||
|
if out is None:
|
||
|
out = np.empty_like(x)
|
||
|
if out.shape[0] == 0:
|
||
|
return out
|
||
|
elif x.dtype == np.float64:
|
||
|
if bl.dtype != np.float64:
|
||
|
bl = bl.astype(np.float64)
|
||
|
return _legendre_transform(x, bl, out=out)
|
||
|
elif x.dtype == np.float32:
|
||
|
if bl.dtype != np.float32:
|
||
|
bl = bl.astype(np.float32)
|
||
|
return _legendre_transform_s(x, bl, out=out)
|
||
|
else:
|
||
|
raise ValueError("unsupported dtype")
|
||
|
|
||
|
|
||
|
def _legendre_transform(double[::1] x, double[::1] bl, double[::1] out):
|
||
|
if out.shape[0] != x.shape[0]:
|
||
|
raise ValueError('x and out must have same shape')
|
||
|
sharp_legendre_transform(&bl[0], NULL, bl.shape[0] - 1, &x[0], &out[0], x.shape[0])
|
||
|
return np.asarray(out)
|
||
|
|
||
|
|
||
|
def _legendre_transform_s(float[::1] x, float[::1] bl, float[::1] out):
|
||
|
if out.shape[0] != x.shape[0]:
|
||
|
raise ValueError('x and out must have same shape')
|
||
|
sharp_legendre_transform_s(&bl[0], NULL, bl.shape[0] - 1, &x[0], &out[0], x.shape[0])
|
||
|
return np.asarray(out)
|
||
|
|
||
|
|
||
|
def legendre_roots(n):
|
||
|
x = np.empty(n, np.double)
|
||
|
w = np.empty(n, np.double)
|
||
|
cdef double[::1] x_buf = x, w_buf = w
|
||
|
if not (x_buf.shape[0] == w_buf.shape[0] == n):
|
||
|
raise AssertionError()
|
||
|
if n > 0:
|
||
|
sharp_legendre_roots(n, &x_buf[0], &w_buf[0])
|
||
|
return x, w
|
||
|
|
||
|
|
||
|
JOBTYPE_TO_CONST = {
|
||
|
'Y': SHARP_Y,
|
||
|
'Yt': SHARP_Yt,
|
||
|
'WY': SHARP_WY,
|
||
|
'YtW': SHARP_YtW
|
||
|
}
|
||
|
|
||
|
def sht(jobtype, geom_info ginfo, alm_info ainfo, double[:, :, ::1] input,
|
||
|
int spin=0, comm=None, add=False):
|
||
|
cdef void *comm_ptr
|
||
|
cdef int flags = SHARP_DP | (SHARP_ADD if add else 0)
|
||
|
cdef int r
|
||
|
cdef sharp_jobtype jobtype_i
|
||
|
cdef double[:, :, ::1] output_buf
|
||
|
cdef int ntrans = input.shape[0] * input.shape[1]
|
||
|
cdef int i, j
|
||
|
|
||
|
if spin == 0 and input.shape[1] != 1:
|
||
|
raise ValueError('For spin == 0, we need input.shape[1] == 1')
|
||
|
elif spin != 0 and input.shape[1] != 2:
|
||
|
raise ValueError('For spin != 0, we need input.shape[1] == 2')
|
||
|
|
||
|
|
||
|
cdef size_t[::1] ptrbuf = np.empty(2 * ntrans, dtype=np.uintp)
|
||
|
cdef double **alm_ptrs = <double**>&ptrbuf[0]
|
||
|
cdef double **map_ptrs = <double**>&ptrbuf[ntrans]
|
||
|
|
||
|
try:
|
||
|
jobtype_i = JOBTYPE_TO_CONST[jobtype]
|
||
|
except KeyError:
|
||
|
raise ValueError('jobtype must be one of: %s' % ', '.join(sorted(JOBTYPE_TO_CONST.keys())))
|
||
|
|
||
|
if jobtype_i == SHARP_Y or jobtype_i == SHARP_WY:
|
||
|
output = np.empty((input.shape[0], input.shape[1], ginfo.local_size()), dtype=np.float64)
|
||
|
output_buf = output
|
||
|
for i in range(input.shape[0]):
|
||
|
for j in range(input.shape[1]):
|
||
|
alm_ptrs[i * input.shape[1] + j] = &input[i, j, 0]
|
||
|
map_ptrs[i * input.shape[1] + j] = &output_buf[i, j, 0]
|
||
|
else:
|
||
|
output = np.empty((input.shape[0], input.shape[1], ainfo.local_size()), dtype=np.float64)
|
||
|
output_buf = output
|
||
|
for i in range(input.shape[0]):
|
||
|
for j in range(input.shape[1]):
|
||
|
alm_ptrs[i * input.shape[1] + j] = &output_buf[i, j, 0]
|
||
|
map_ptrs[i * input.shape[1] + j] = &input[i, j, 0]
|
||
|
|
||
|
if comm is None:
|
||
|
with nogil:
|
||
|
sharp_execute (
|
||
|
jobtype_i,
|
||
|
geom_info=ginfo.ginfo, alm_info=ainfo.ainfo,
|
||
|
spin=spin, alm=alm_ptrs, map=map_ptrs,
|
||
|
ntrans=ntrans, flags=flags, time=NULL, opcnt=NULL)
|
||
|
else:
|
||
|
from mpi4py import MPI
|
||
|
if not isinstance(comm, MPI.Comm):
|
||
|
raise TypeError('comm must be an mpi4py communicator')
|
||
|
from .libsharp_mpi import _addressof
|
||
|
comm_ptr = <void*><size_t>_addressof(comm)
|
||
|
with nogil:
|
||
|
r = sharp_execute_mpi_maybe (
|
||
|
comm_ptr, jobtype_i,
|
||
|
geom_info=ginfo.ginfo, alm_info=ainfo.ainfo,
|
||
|
spin=spin, alm=alm_ptrs, map=map_ptrs,
|
||
|
ntrans=ntrans, flags=flags, time=NULL, opcnt=NULL)
|
||
|
if r == SHARP_ERROR_NO_MPI:
|
||
|
raise Exception('MPI requested, but not available')
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def synthesis(*args, **kw):
|
||
|
return sht('Y', *args, **kw)
|
||
|
|
||
|
def adjoint_synthesis(*args, **kw):
|
||
|
return sht('Yt', *args, **kw)
|
||
|
|
||
|
def analysis(*args, **kw):
|
||
|
return sht('YtW', *args, **kw)
|
||
|
|
||
|
def adjoint_analysis(*args, **kw):
|
||
|
return sht('WY', *args, **kw)
|
||
|
|
||
|
|
||
|
#
|
||
|
# geom_info
|
||
|
#
|
||
|
class NotInitializedError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
cdef class geom_info:
|
||
|
cdef sharp_geom_info *ginfo
|
||
|
|
||
|
def __cinit__(self, *args, **kw):
|
||
|
self.ginfo = NULL
|
||
|
|
||
|
def local_size(self):
|
||
|
if self.ginfo == NULL:
|
||
|
raise NotInitializedError()
|
||
|
return sharp_map_size(self.ginfo)
|
||
|
|
||
|
def __dealloc__(self):
|
||
|
if self.ginfo != NULL:
|
||
|
sharp_destroy_geom_info(self.ginfo)
|
||
|
self.ginfo = NULL
|
||
|
|
||
|
|
||
|
cdef class healpix_grid(geom_info):
|
||
|
|
||
|
_weight_cache = {} # { (nside, 'T'/'Q'/'U') -> numpy array of ring weights cached from file }
|
||
|
|
||
|
def __init__(self, int nside, stride=1, int[::1] rings=None, double[::1] weights=None):
|
||
|
if weights is not None and weights.shape[0] != 2 * nside:
|
||
|
raise ValueError('weights must have length 2 * nside')
|
||
|
sharp_make_subset_healpix_geom_info(nside, stride,
|
||
|
nrings=4 * nside - 1 if rings is None else rings.shape[0],
|
||
|
rings=NULL if rings is None else &rings[0],
|
||
|
weight=NULL if weights is None else &weights[0],
|
||
|
geom_info=&self.ginfo)
|
||
|
|
||
|
@classmethod
|
||
|
def load_ring_weights(cls, nside, fields):
|
||
|
"""
|
||
|
Loads HEALPix ring weights from file. The environment variable
|
||
|
HEALPIX should be set, and this routine will look in the `data`
|
||
|
subdirectory.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
nside: int
|
||
|
HEALPix nside parameter
|
||
|
|
||
|
fields: tuple of str
|
||
|
Which weights to extract; pass ('T',) to only get scalar
|
||
|
weights back, or ('T', 'Q', 'U') to get all the weights
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
|
||
|
List of NumPy arrays, according to fields parameter.
|
||
|
|
||
|
"""
|
||
|
import os
|
||
|
from astropy.io import fits
|
||
|
data_path = os.path.join(os.environ['HEALPIX'], 'data')
|
||
|
fits_field_names = {
|
||
|
'T': 'TEMPERATURE WEIGHTS',
|
||
|
'Q': 'Q-POLARISATION WEIGHTS',
|
||
|
'U': 'U-POLARISATION WEIGHTS'}
|
||
|
|
||
|
must_load = [field for field in fields if (nside, field) not in cls._weight_cache]
|
||
|
|
||
|
if must_load:
|
||
|
hdulist = fits.open(os.path.join(data_path, 'weight_ring_n%05d.fits' % nside))
|
||
|
try:
|
||
|
for field in must_load:
|
||
|
w = hdulist[1].data.field(fits_field_names[field]).ravel().astype(np.double)
|
||
|
w += 1
|
||
|
cls._weight_cache[nside, field] = w
|
||
|
finally:
|
||
|
hdulist.close()
|
||
|
return [cls._weight_cache[(nside, field)].copy() for field in fields]
|
||
|
|
||
|
#
|
||
|
# alm_info
|
||
|
#
|
||
|
|
||
|
|
||
|
cdef class alm_info:
|
||
|
cdef sharp_alm_info *ainfo
|
||
|
|
||
|
def __cinit__(self, *args, **kw):
|
||
|
self.ainfo = NULL
|
||
|
|
||
|
def local_size(self):
|
||
|
if self.ainfo == NULL:
|
||
|
raise NotInitializedError()
|
||
|
return sharp_alm_count(self.ainfo)
|
||
|
|
||
|
def __dealloc__(self):
|
||
|
if self.ainfo != NULL:
|
||
|
sharp_destroy_alm_info(self.ainfo)
|
||
|
self.ainfo = NULL
|
||
|
|
||
|
|
||
|
cdef class triangular_order(alm_info):
|
||
|
def __init__(self, int lmax, mmax=None, stride=1):
|
||
|
mmax = mmax if mmax is not None else lmax
|
||
|
sharp_make_triangular_alm_info(lmax, mmax, stride, &self.ainfo)
|
||
|
|
||
|
|
||
|
cdef class rectangular_order(alm_info):
|
||
|
def __init__(self, int lmax, mmax=None, stride=1):
|
||
|
mmax = mmax if mmax is not None else lmax
|
||
|
sharp_make_rectangular_alm_info(lmax, mmax, stride, &self.ainfo)
|
||
|
|
||
|
|
||
|
cdef class packed_real_order(alm_info):
|
||
|
def __init__(self, int lmax, stride=1, int[::1] ms=None):
|
||
|
sharp_make_mmajor_real_packed_alm_info(lmax=lmax, stride=stride,
|
||
|
nm=lmax + 1 if ms is None else ms.shape[0],
|
||
|
ms=NULL if ms is None else &ms[0],
|
||
|
alm_info=&self.ainfo)
|
||
|
|