JaxPM/jaxpm/kernels.py
2024-07-18 12:44:18 +02:00

154 lines
3.8 KiB
Python

from functools import partial
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
from jax._src import mesh as mesh_lib
from jax.sharding import PartitionSpec as P
from jaxpm.distributed import autoshmap
def fftk(shape, dtype=np.float32):
"""
Generate Fourier transform wave numbers for a given mesh.
Args:
nc (int): Shape of the mesh grid.
Returns:
list: List of wave number arrays for each dimension in
the order [kx, ky, kz].
"""
kx, ky, kz = [jnp.fft.fftfreq(s, dtype=dtype) * 2 * np.pi for s in shape]
@partial(autoshmap,
in_specs=(P('x'), P('y'), P(None)),
out_specs=(P('x'), P(None, 'y'), P(None)))
def get_kvec(ky, kz, kx):
return (ky.reshape([-1, 1, 1]),
kz.reshape([1, -1, 1]),
kx.reshape([1, 1, -1])) # yapf: disable
if not mesh_lib.thread_resources.env.physical_mesh.empty:
ky, kz, kx = get_kvec(ky, kz, kx) # The order corresponds
else:
kx, ky, kz = get_kvec(kx, ky, kz) # The order corresponds
# to the order of dimensions in the transposed FFT
return kx, ky, kz
def interpolate_power_spectrum(input, k, pk):
pk_fn = lambda x: jc.scipy.interpolate.interp(x.reshape(-1), k, pk
).reshape(x.shape)
return autoshmap(pk_fn, in_specs=P('x', 'y'), out_specs=P('x', 'y'))(input)
def gradient_kernel(kvec, direction, order=1):
"""
Computes the gradient kernel in the requested direction
Parameters:
-----------
kvec: array
Array of k values in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns:
--------
wts: array
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
wts = jnp.where(kk == 0, 1., 1. / kk)
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.
def cic_compensation(kvec):
"""
Computes cic compensation kernel.
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
Itself based on equation 18 (with p=2) of
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
Args:
kvec: array of k values in Fourier space
Returns:
v: array of kernel
"""
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
return wts
def PGD_kernel(kvec, kl, ks):
"""
Computes the PGD kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
kl: float
initial long range scale parameter
ks: float
initial dhort range scale parameter
Returns:
--------
v: array
kernel
"""
kk = sum(ki**2 for ki in kvec)
kl2 = kl**2
ks4 = ks**4
mask = (kk == 0).nonzero()
kk[mask] = 1
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
imask = (~(kk == 0)).astype(int)
v *= imask
return v