mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-07 20:30:54 +00:00
261 lines
9.3 KiB
Python
261 lines
9.3 KiB
Python
import os
|
|
|
|
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
|
|
import jax
|
|
|
|
jax.distributed.initialize()
|
|
|
|
rank = jax.process_index()
|
|
size = jax.process_count()
|
|
|
|
import argparse
|
|
import time
|
|
|
|
import jax.numpy as jnp
|
|
import jax_cosmo as jc
|
|
import numpy as np
|
|
from cupy.cuda.nvtx import RangePop, RangePush
|
|
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
|
|
PIDController, SaveAt, Tsit5, diffeqsolve)
|
|
from hpc_plotter.timer import Timer
|
|
from jax.experimental import mesh_utils
|
|
from jax.experimental.multihost_utils import sync_global_devices
|
|
from jax.sharding import Mesh, NamedSharding
|
|
from jax.sharding import PartitionSpec as P
|
|
|
|
from jaxpm.kernels import interpolate_power_spectrum
|
|
from jaxpm.painting import cic_paint_dx
|
|
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
|
|
|
|
|
def run_simulation(mesh_shape,
|
|
box_size,
|
|
halo_size,
|
|
solver_choice,
|
|
iterations,
|
|
pdims=None):
|
|
|
|
@jax.jit
|
|
def simulate(omega_c, sigma8):
|
|
# Create a small function to generate the matter power spectrum
|
|
k = jnp.logspace(-4, 1, 128)
|
|
pk = jc.power.linear_matter_power(
|
|
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
|
|
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
|
|
|
|
# Create initial conditions
|
|
initial_conditions = linear_field(mesh_shape,
|
|
box_size,
|
|
pk_fn,
|
|
seed=jax.random.PRNGKey(0))
|
|
|
|
# Create particles
|
|
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
|
|
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
|
|
if solver_choice == "Dopri5":
|
|
solver = Dopri5()
|
|
elif solver_choice == "LeapfrogMidpoint":
|
|
solver = LeapfrogMidpoint()
|
|
elif solver_choice == "Tsit5":
|
|
solver = Tsit5()
|
|
elif solver_choice == "lpt":
|
|
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
|
|
print(f"TYPE of lpt_field: {type(lpt_field)}")
|
|
return lpt_field, {"num_steps": 0}
|
|
else:
|
|
raise ValueError(
|
|
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
|
|
# Evolve the simulation forward
|
|
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
|
|
term = ODETerm(
|
|
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
|
|
|
|
if solver_choice == "Dopri5" or solver_choice == "Tsit5":
|
|
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
|
|
elif solver_choice == "LeapfrogMidpoint" or solver_choice == "Euler":
|
|
stepsize_controller = ConstantStepSize()
|
|
res = diffeqsolve(term,
|
|
solver,
|
|
t0=0.1,
|
|
t1=1.,
|
|
dt0=0.01,
|
|
y0=jnp.stack([dx, p], axis=0),
|
|
args=cosmo,
|
|
saveat=SaveAt(t1=True),
|
|
stepsize_controller=stepsize_controller)
|
|
|
|
# Return the simulation volume at requested
|
|
state = res.ys[-1]
|
|
final_field = cic_paint_dx(state[0], halo_size=halo_size)
|
|
|
|
return final_field, res.stats
|
|
|
|
def run():
|
|
# Warm start
|
|
chrono_fun = Timer()
|
|
RangePush("warmup")
|
|
final_field, stats = chrono_fun.chrono_jit(simulate,
|
|
0.32,
|
|
0.8,
|
|
ndarray_arg=0)
|
|
RangePop()
|
|
sync_global_devices("warmup")
|
|
for i in range(iterations):
|
|
RangePush(f"sim iter {i}")
|
|
final_field, stats = chrono_fun.chrono_fun(simulate,
|
|
0.32,
|
|
0.8,
|
|
ndarray_arg=0)
|
|
RangePop()
|
|
return final_field, stats, chrono_fun
|
|
|
|
if jax.device_count() > 1:
|
|
devices = mesh_utils.create_device_mesh(pdims)
|
|
mesh = Mesh(devices.T, axis_names=('x', 'y'))
|
|
with mesh:
|
|
# Warm start
|
|
final_field, stats, chrono_fun = run()
|
|
else:
|
|
final_field, stats, chrono_fun = run()
|
|
|
|
return final_field, stats, chrono_fun
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description='JAX Cosmo Simulation Benchmark')
|
|
parser.add_argument('-m',
|
|
'--mesh_size',
|
|
type=int,
|
|
help='Mesh size',
|
|
required=True)
|
|
parser.add_argument('-b',
|
|
'--box_size',
|
|
type=float,
|
|
help='Box size',
|
|
required=True)
|
|
parser.add_argument('-p',
|
|
'--pdims',
|
|
type=str,
|
|
help='Processor dimensions',
|
|
default=None)
|
|
parser.add_argument(
|
|
'-pr',
|
|
'--precision',
|
|
type=str,
|
|
help='Precision',
|
|
choices=["float32", "float64"],
|
|
)
|
|
parser.add_argument('-hs',
|
|
'--halo_size',
|
|
type=int,
|
|
help='Halo size',
|
|
required=True)
|
|
parser.add_argument('-s',
|
|
'--solver',
|
|
type=str,
|
|
help='Solver',
|
|
choices=[
|
|
"Dopri5", "dopri5", "d5", "Tsit5", "tsit5", "t5",
|
|
"LeapfrogMidpoint", "leapfrogmidpoint", "lfm",
|
|
"lpt"
|
|
],
|
|
required=True)
|
|
parser.add_argument('-i',
|
|
'--iterations',
|
|
type=int,
|
|
help='Number of iterations',
|
|
default=10)
|
|
parser.add_argument('-o',
|
|
'--output_path',
|
|
type=str,
|
|
help='Output path',
|
|
default=".")
|
|
parser.add_argument('-f',
|
|
'--save_fields',
|
|
action='store_true',
|
|
help='Save fields')
|
|
parser.add_argument('-n',
|
|
'--nodes',
|
|
type=int,
|
|
help='Number of nodes',
|
|
default=1)
|
|
|
|
args = parser.parse_args()
|
|
mesh_size = args.mesh_size
|
|
box_size = [args.box_size] * 3
|
|
halo_size = args.halo_size
|
|
solver_choice = args.solver
|
|
iterations = args.iterations
|
|
output_path = args.output_path
|
|
os.makedirs(output_path, exist_ok=True)
|
|
|
|
print(f"solver choice: {solver_choice}")
|
|
match solver_choice:
|
|
case "Dopri5" | "dopri5" | "d5":
|
|
solver_choice = "Dopri5"
|
|
case "Tsit5" | "tsit5" | "t5":
|
|
solver_choice = "Tsit5"
|
|
case "LeapfrogMidpoint" | "leapfrogmidpoint" | "lfm":
|
|
solver_choice = "LeapfrogMidpoint"
|
|
case "lpt":
|
|
solver_choice = "lpt"
|
|
case _:
|
|
raise ValueError(
|
|
"Invalid solver choice. Use 'Dopri5', 'Tsit5', 'LeapfrogMidpoint' or 'lpt"
|
|
)
|
|
if args.precision == "float32":
|
|
jax.config.update("jax_enable_x64", False)
|
|
elif args.precision == "float64":
|
|
jax.config.update("jax_enable_x64", True)
|
|
|
|
if args.pdims:
|
|
pdims = tuple(map(int, args.pdims.split("x")))
|
|
else:
|
|
pdims = (1, 1)
|
|
|
|
mesh_shape = [mesh_size] * 3
|
|
|
|
final_field, stats, chrono_fun = run_simulation(mesh_shape, box_size,
|
|
halo_size, solver_choice,
|
|
iterations, pdims)
|
|
|
|
print(
|
|
f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}"
|
|
)
|
|
|
|
metadata = {
|
|
'rank': rank,
|
|
'function_name': f'JAXPM-{solver_choice}',
|
|
'precision': args.precision,
|
|
'x': str(mesh_size),
|
|
'y': str(mesh_size),
|
|
'z': str(stats["num_steps"]),
|
|
'px': str(pdims[0]),
|
|
'py': str(pdims[1]),
|
|
'backend': 'NCCL',
|
|
'nodes': str(args.nodes)
|
|
}
|
|
# Print the results to a CSV file
|
|
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
|
|
|
|
# Save the final field
|
|
nb_gpus = jax.device_count()
|
|
pdm_str = f"{pdims[0]}x{pdims[1]}"
|
|
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
|
|
os.makedirs(field_folder, exist_ok=True)
|
|
with open(f'{field_folder}/jaxpm.log', 'w') as f:
|
|
f.write(f"Args: {args}\n")
|
|
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
|
|
for i, time in enumerate(chrono_fun.times):
|
|
f.write(f"Time {i}: {time:.4f} ms\n")
|
|
f.write(f"Stats: {stats}\n")
|
|
if args.save_fields:
|
|
np.save(f'{field_folder}/final_field_0_{rank}.npy',
|
|
final_field.addressable_data(0))
|
|
|
|
print(f"Finished! ")
|
|
print(f"Stats {stats}")
|
|
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
|
|
print(f"Saving field and logs in {field_folder}")
|