JaxPM/tests/test_distributed_pm.py
Wassim Kabalan 1f5c619531 format
2025-01-20 22:41:19 +01:00

361 lines
14 KiB
Python

from conftest import compare_sharding, initialize_distributed
initialize_distributed() # ignore : E402
from functools import partial # noqa : E402
import jax # noqa : E402
import jax.numpy as jnp # noqa : E402
import jax_cosmo as jc # noqa : E402
import pytest # noqa : E402
from diffrax import SaveAt # noqa : E402
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
from helpers import MSE # noqa : E402
from jax import lax # noqa : E402
from jax.experimental.multihost_utils import process_allgather # noqa : E402
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P # noqa : E402
from jaxdecomp import ShardedArray # noqa : E402
from jaxpm.distributed import fft3d, uniform_particles # noqa : E402
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
from jaxpm.pm import pm_forces # noqa : E402
from jaxpm.pm import lpt, make_diffrax_ode # noqa : E402
_TOLERANCE = 3.0 # 🙃🙃
@pytest.mark.distributed
@pytest.mark.parametrize("order", [1, 2])
@pytest.mark.parametrize("absolute_painting", [True, False])
@pytest.mark.parametrize("shardedArrayAPI", [True, False])
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
absolute_painting, shardedArrayAPI):
mesh_shape, box_shape = simulation_config
# SINGLE DEVICE RUN
cosmo._workspace = {}
if shardedArrayAPI:
ic = ShardedArray(initial_conditions)
else:
ic = initial_conditions
if absolute_painting:
particles = uniform_particles(mesh_shape)
if shardedArrayAPI:
particles = ShardedArray(particles)
# Initial displacement
dx, p, _ = lpt(cosmo, ic, particles, a=0.1, order=order)
ode_fn = ODETerm(make_diffrax_ode(mesh_shape))
y0 = jax.tree.map(
lambda particles, dx, p: jnp.stack([particles + dx, p]), particles,
dx, p)
else:
dx, p, _ = lpt(cosmo, ic, a=0.1, order=order)
ode_fn = ODETerm(make_diffrax_ode(mesh_shape,
paint_absolute_pos=False))
y0 = jax.tree.map(lambda dx, p: jnp.stack([dx, p]), dx, p)
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.0,
dt0=None,
args=cosmo,
y0=y0,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
single_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
solutions.ys[-1, 0])
else:
single_device_final_field = cic_paint_dx(solutions.ys[-1, 0])
print("Done with single device run")
# MULTI DEVICE RUN
mesh = jax.make_mesh((1, 8), ('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
halo_size = mesh_shape[0] // 2
ic = lax.with_sharding_constraint(initial_conditions, sharding)
print(f"sharded initial conditions {ic.sharding}")
if shardedArrayAPI:
ic = ShardedArray(ic, sharding)
cosmo._workspace = {}
if absolute_painting:
particles = uniform_particles(mesh_shape, sharding=sharding)
if shardedArrayAPI:
particles = ShardedArray(particles, sharding)
# Initial displacement
dx, p, _ = lpt(cosmo,
ic,
particles,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(mesh_shape,
halo_size=halo_size,
sharding=sharding))
y0 = jax.tree.map(
lambda particles, dx, p: jnp.stack([particles + dx, p]), particles,
dx, p)
else:
dx, p, _ = lpt(cosmo,
ic,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(mesh_shape,
paint_absolute_pos=False,
halo_size=halo_size,
sharding=sharding))
y0 = jax.tree.map(lambda dx, p: jnp.stack([dx, p]), dx, p)
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.0,
dt0=None,
y0=y0,
args=cosmo,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
else:
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
multi_device_final_field_g = process_allgather(multi_device_final_field,
tiled=True)
single_device_final_field_arr, = jax.tree.leaves(single_device_final_field)
multi_device_final_field_arr, = jax.tree.leaves(multi_device_final_field_g)
mse = MSE(single_device_final_field_arr, multi_device_final_field_arr)
print(f"MSE is {mse}")
if shardedArrayAPI:
assert type(multi_device_final_field) == ShardedArray
assert compare_sharding(multi_device_final_field.sharding, sharding)
assert compare_sharding(multi_device_final_field.initial_sharding,
sharding)
assert mse < _TOLERANCE
@pytest.mark.distributed
@pytest.mark.parametrize("order", [1, 2])
@pytest.mark.parametrize("absolute_painting", [True, False])
def test_distrubted_gradients(simulation_config, initial_conditions, cosmo,
order, nbody_from_lpt1, nbody_from_lpt2,
absolute_painting):
mesh_shape, box_shape = simulation_config
# SINGLE DEVICE RUN
cosmo._workspace = {}
mesh = jax.make_mesh((1, 8), ('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
halo_size = mesh_shape[0] // 2
initial_conditions = lax.with_sharding_constraint(initial_conditions,
sharding)
print(f"sharded initial conditions {initial_conditions.sharding}")
initial_conditions = ShardedArray(initial_conditions, sharding)
cosmo._workspace = {}
@jax.jit
def forward_model(initial_conditions, cosmo):
if absolute_painting:
particles = uniform_particles(mesh_shape, sharding=sharding)
particles = ShardedArray(particles, sharding)
# Initial displacement
dx, p, _ = lpt(cosmo,
initial_conditions,
particles,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(mesh_shape,
halo_size=halo_size,
sharding=sharding))
y0 = jax.tree.map(
lambda particles, dx, p: jnp.stack([particles + dx, p]),
particles, dx, p)
else:
dx, p, _ = lpt(cosmo,
initial_conditions,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(mesh_shape,
paint_absolute_pos=False,
halo_size=halo_size,
sharding=sharding))
y0 = jax.tree.map(lambda dx, p: jnp.stack([dx, p]), dx, p)
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.0,
dt0=None,
y0=y0,
args=cosmo,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
else:
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
return multi_device_final_field
@jax.jit
def model(initial_conditions, cosmo):
final_field = forward_model(initial_conditions, cosmo)
final_field, = jax.tree.leaves(final_field)
return MSE(final_field,
nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
obs_val = model(initial_conditions, cosmo)
shifted_initial_conditions = initial_conditions + jax.random.normal(
jax.random.key(42), initial_conditions.shape) * 5
good_grads = jax.grad(model)(initial_conditions, cosmo)
off_grads = jax.grad(model)(shifted_initial_conditions, cosmo)
assert compare_sharding(good_grads.sharding, initial_conditions.sharding)
assert compare_sharding(off_grads.sharding, initial_conditions.sharding)
@pytest.mark.distributed
@pytest.mark.parametrize("absolute_painting", [True, False])
def test_fwd_rev_gradients(cosmo, absolute_painting):
mesh_shape, box_shape = (8, 8, 8), (20.0, 20.0, 20.0)
# SINGLE DEVICE RUN
cosmo._workspace = {}
mesh = jax.make_mesh((1, 8), ('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
halo_size = mesh_shape[0] // 2
initial_conditions = jax.random.normal(jax.random.PRNGKey(42), mesh_shape)
initial_conditions = lax.with_sharding_constraint(initial_conditions,
sharding)
print(f"sharded initial conditions {initial_conditions.sharding}")
initial_conditions = ShardedArray(initial_conditions, sharding)
cosmo._workspace = {}
@partial(jax.jit, static_argnums=(3, 4, 5))
def compute_forces(initial_conditions,
cosmo,
particles=None,
a=0.5,
halo_size=0,
sharding=None):
paint_absolute_pos = particles is not None
if particles is None:
particles = jax.tree.map(
lambda ic: jnp.zeros_like(ic, shape=(*ic.shape, 3)),
initial_conditions)
a = jnp.atleast_1d(a)
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
delta_k = fft3d(initial_conditions)
initial_force = pm_forces(particles,
delta=delta_k,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding)
return initial_force[..., 0]
particles = ShardedArray(uniform_particles(mesh_shape, sharding=sharding),
sharding) if absolute_painting else None
forces = compute_forces(initial_conditions,
cosmo,
particles=particles,
halo_size=halo_size,
sharding=sharding)
back_gradient = jax.jacrev(compute_forces)(initial_conditions,
cosmo,
particles=particles,
halo_size=halo_size,
sharding=sharding)
fwd_gradient = jax.jacfwd(compute_forces)(initial_conditions,
cosmo,
particles=particles,
halo_size=halo_size,
sharding=sharding)
assert compare_sharding(forces.sharding, initial_conditions.sharding)
assert compare_sharding(back_gradient[0, 0, 0, ...].sharding,
initial_conditions.sharding)
assert compare_sharding(fwd_gradient.sharding, initial_conditions.sharding)