JaxPM/jaxpm/experimental/distributed_pm.py
2022-10-22 07:17:29 -04:00

94 lines
2.9 KiB
Python

import jax
from jax.lax import linear_solve_p
import jax.numpy as jnp
from jax.experimental.maps import xmap
from functools import partial
import jax_cosmo as jc
from jaxpm.kernels import fftk
import jaxpm.experimental.distributed_ops as dops
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=16):
"""
Computes gravitational forces on particles using a PM scheme
"""
if mesh_shape is None:
mesh_shape = delta_k.shape
kvec = [k.squeeze() for k in fftk(mesh_shape, symmetric=False)]
if delta_k is None:
delta = dops.cic_paint(positions, mesh_shape, halo_size)
delta_k = dops.fft3d(dops.reshape_split_to_dense(delta))
forces_k = dops.gradient_laplace_kernel(delta_k, kvec)
# Recovers forces at particle positions
forces = [dops.cic_read(dops.reshape_dense_to_split(dops.ifft3d(f)),
positions, halo_size) for f in forces_k]
return dops.stack3d(*forces)
def linear_field(cosmo, mesh_shape, box_size, seed, return_Fourier=True):
"""
Generate initial conditions.
Seed should have the dimension of the computational mesh
"""
# Sample normal field
field = dops.normal(seed, shape=mesh_shape)
# Go to Fourier space
field = dops.fft3d(dops.reshape_split_to_dense(field))
# Rescaling k to physical units
kvec = [k.squeeze() / box_size[i] * mesh_shape[i]
for i, k in enumerate(fftk(mesh_shape, symmetric=False))]
k = jnp.logspace(-4, 2, 256)
pk = jc.power.linear_matter_power(cosmo, k)
pk = pk * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]
) / (box_size[0] * box_size[1] * box_size[2])
field = dops.scale_by_power_spectrum(field, kvec, k, jnp.sqrt(pk))
if return_Fourier:
return field
else:
return dops.reshape_dense_to_split(dops.ifft3d(field))
def lpt(cosmo, initial_conditions, positions, a):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(positions, delta_k=initial_conditions)
a = jnp.atleast_1d(a)
dx = dops.scalar_multiply(initial_force, growth_factor(cosmo, a))
p = dops.scalar_multiply(dx, a**2 * growth_rate(cosmo, a) *
jnp.sqrt(jc.background.Esqr(cosmo, a)))
return dx, p
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = dops.scalar_multiply(
vel, 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))))
# Computes the update of velocity (kick)
dvel = dops.scalar_multiply(
forces, 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))))
return dpos, dvel
return nbody_ode