mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-06-29 16:41:11 +00:00
181 lines
6 KiB
Python
181 lines
6 KiB
Python
import jax
|
|
import jax.numpy as jnp
|
|
import jax_cosmo
|
|
import jax_cosmo as jc
|
|
import jax_cosmo.constants as constants
|
|
from jax.scipy.ndimage import map_coordinates
|
|
|
|
from jaxpm.distributed import uniform_particles
|
|
from jaxpm.painting import cic_paint, cic_paint_2d, cic_paint_dx
|
|
from jaxpm.spherical import paint_spherical
|
|
from jaxpm.utils import gaussian_smoothing
|
|
|
|
|
|
def density_plane_fn(box_shape,
|
|
box_size,
|
|
density_plane_width,
|
|
density_plane_npix,
|
|
sharding=None):
|
|
|
|
def f(t, y, args):
|
|
positions = y[0]
|
|
cosmo = args
|
|
nx, ny, nz = box_shape
|
|
|
|
# Converts time t to comoving distance in voxel coordinates
|
|
w = density_plane_width / box_size[2] * box_shape[2]
|
|
center = jc.background.radial_comoving_distance(
|
|
cosmo, t) / box_size[2] * box_shape[2]
|
|
positions = uniform_particles(box_shape) + positions
|
|
xy = positions[..., :2]
|
|
d = positions[..., 2]
|
|
|
|
# Apply 2d periodic conditions
|
|
xy = jnp.mod(xy, nx)
|
|
|
|
# Rescaling positions to target grid
|
|
xy = xy / nx * density_plane_npix
|
|
# Selecting only particles that fall inside the volume of interest
|
|
weight = jnp.where((d > (center - w / 2)) & (d <= (center + w / 2)),
|
|
1.0, 0.0)
|
|
# Painting density plane
|
|
zero_mesh = jnp.zeros([density_plane_npix, density_plane_npix])
|
|
# Apply sharding in order to recover sharding when taking gradients
|
|
if sharding is not None:
|
|
xy = jax.lax.with_sharding_constraint(xy, sharding)
|
|
# Apply CIC painting
|
|
density_plane = cic_paint_2d(zero_mesh, xy, weight)
|
|
|
|
# Apply density normalization
|
|
density_plane = density_plane / ((nx / density_plane_npix) *
|
|
(ny / density_plane_npix) * w)
|
|
return density_plane
|
|
|
|
return f
|
|
|
|
|
|
def spherical_density_fn(box_shape,
|
|
box_size,
|
|
nside,
|
|
fov,
|
|
center_radec,
|
|
observer_position,
|
|
d_R,
|
|
sharding=None):
|
|
|
|
def f(t, y, args):
|
|
positions = y[0]
|
|
nx, ny, nz = box_shape
|
|
bx, by, bz = box_size
|
|
cosmo = args
|
|
# Converts time t to comoving distance in voxel coordinates
|
|
w = d_R / box_size[2] * box_shape[2]
|
|
center = ((jc.background.radial_comoving_distance(cosmo, t)) / bz) * nz
|
|
|
|
# Apply sharding in order to recover sharding when taking gradients
|
|
if sharding is not None:
|
|
positions = jax.lax.with_sharding_constraint(positions, sharding)
|
|
|
|
density_mesh = cic_paint_dx(positions)
|
|
# Project to spherical map
|
|
spherical_map = paint_spherical(density_mesh, nside, fov, center_radec,
|
|
observer_position, box_size, center,
|
|
d_R)
|
|
return spherical_map
|
|
|
|
return f
|
|
|
|
|
|
# ==========================================================
|
|
# Weak Lensing Born Approximation
|
|
# ==========================================================
|
|
def convergence_Born(cosmo, density_planes, r, a, dx, dz, coords, z_source):
|
|
"""
|
|
Compute Born-approximation lensing convergence maps.
|
|
|
|
Parameters
|
|
----------
|
|
cosmo : jc.Cosmology
|
|
Cosmology object.
|
|
density_planes : ndarray
|
|
3D array of lensing density planes [nx, ny, n_planes].
|
|
r, a : ndarray
|
|
Comoving distances and scale factors per plane.
|
|
dx : float
|
|
Pixel scale.
|
|
dz : float
|
|
Redshift bin width.
|
|
coords : ndarray
|
|
Angular coordinates grid [2, N, 2] in radians.
|
|
z_source : ndarray
|
|
Source redshifts.
|
|
|
|
Returns
|
|
-------
|
|
convergence : ndarray
|
|
2D convergence map for each source redshift.
|
|
"""
|
|
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
|
|
# Compute comoving distance of source galaxies
|
|
r_s = jc.background.radial_comoving_distance(cosmo, 1 / (1 + z_source))
|
|
n_planes = len(r)
|
|
|
|
def scan_fn(carry, i):
|
|
density_planes, a, r = carry
|
|
|
|
p = density_planes[:, :, i]
|
|
density_normalization = dz * r[i] / a[i]
|
|
p = (p - p.mean()) * constant_factor * density_normalization
|
|
|
|
# Interpolate at the density plane coordinates
|
|
im = map_coordinates(p, coords * r[i] / dx - 0.5, order=1, mode="wrap")
|
|
|
|
return carry, im * jnp.clip(1.0 -
|
|
(r[i] / r_s), 0, 1000).reshape([-1, 1, 1])
|
|
|
|
_, convergence = jax.lax.scan(scan_fn, (density_planes, a, r),
|
|
jnp.arange(n_planes))
|
|
return convergence.sum(axis=0)
|
|
|
|
|
|
def spherical_convergence_Born(cosmo, density_planes, r, a, nside, z_source):
|
|
"""
|
|
Compute Born-approximation lensing convergence maps on a sphere.
|
|
|
|
Parameters
|
|
----------
|
|
cosmo : jc.Cosmology
|
|
Cosmology object.
|
|
density_planes : ndarray
|
|
3D array of lensing density planes [n_planes, npix].
|
|
r, a : ndarray
|
|
Comoving distances and scale factors per plane.
|
|
nside : int
|
|
Healpix nside parameter.
|
|
z_source : ndarray
|
|
Source redshifts.
|
|
|
|
Returns
|
|
-------
|
|
convergence : ndarray
|
|
2D convergence map for each source redshift.
|
|
"""
|
|
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
|
|
# Compute comoving distance of source galaxies
|
|
r_s = jc.background.radial_comoving_distance(cosmo, 1 / (1 + z_source))
|
|
n_planes = len(r)
|
|
|
|
def scan_fn(carry, i):
|
|
density_planes, a, r = carry
|
|
|
|
p = density_planes[i, :]
|
|
density_normalization = r[i] / a[
|
|
i] # This normalization needs to be checked
|
|
p = (p - p.mean()) * constant_factor * density_normalization
|
|
|
|
return carry, p * jnp.clip(1.0 -
|
|
(r[i] / r_s), 0, 1000).reshape([-1, 1])
|
|
|
|
_, convergence = jax.lax.scan(scan_fn, (density_planes, a, r),
|
|
jnp.arange(n_planes))
|
|
return convergence.sum(axis=0)
|