JaxPM/jaxpm/painting.py
2025-02-05 14:26:28 +01:00

298 lines
12 KiB
Python

from functools import partial
import jax
import jax.lax as lax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.distributed import (autoshmap, fft3d, get_halo_size, halo_exchange,
ifft3d, slice_pad, slice_unpad)
from jaxpm.kernels import cic_compensation, fftk
from jaxpm.painting_utils import gather, scatter
def _cic_paint_impl(grid_mesh, positions, weight=None):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
displacement field: [nx, ny, nz, 3]
"""
positions = positions.reshape([-1, 3])
positions = jax.tree.map(lambda p: jnp.expand_dims(p, 1), positions)
floor = jax.tree.map(jnp.floor, positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jax.tree.map(jnp.abs, (positions - neighboor_coords))
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
if weight is not None:
if jax.tree.all(jax.tree.map(jnp.isscalar, weight)):
kernel = jax.tree.map(
lambda k, w: jnp.multiply(jnp.expand_dims(w, axis=-1), k),
kernel, weight)
else:
kernel = jax.tree.map(
lambda k, w: jnp.multiply(w.reshape(*positions.shape[:-1]), k),
kernel, weight)
neighboor_coords = jax.tree.map(
lambda nc: jnp.mod(
nc.reshape([-1, 8, 3]).astype('int32'), jnp.array(grid_mesh.shape)
), neighboor_coords)
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1,
2))
mesh = jax.tree.map(
lambda g, nc, k: lax.scatter_add(g, nc, k.reshape([-1, 8]), dnums),
grid_mesh, neighboor_coords, kernel)
return mesh
@partial(jax.jit, static_argnums=(3, 4))
def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
positions_structure = jax.tree.structure(positions)
grid_mesh = jax.tree.unflatten(positions_structure,
jax.tree.leaves(grid_mesh))
positions = positions.reshape((*grid_mesh.shape, 3))
halo_size, halo_extents = get_halo_size(halo_size, sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding)
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(_cic_paint_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec, P()),
out_specs=spec)(grid_mesh, positions, weight)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
grid_mesh = slice_unpad(grid_mesh, halo_size, sharding)
return grid_mesh
def _cic_read_impl(grid_mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [nx,ny,nz, 3]
"""
# Save original shape for reshaping output later
original_shape = positions.shape
# Reshape positions to a flat list of 3D coordinates
positions = positions.reshape([-1, 3])
# Expand dimensions to calculate neighbor coordinates
positions = jax.tree.map(lambda p: jnp.expand_dims(p, 1), positions)
# Floor the positions to get the base grid cell for each particle
floor = jax.tree.map(jnp.floor, positions)
# Define connections to calculate all neighbor coordinates
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
# Calculate the 8 neighboring coordinates
neighboor_coords = floor + connection
# Calculate kernel weights based on distance from each neighboring coordinate
kernel = 1. - jax.tree.map(jnp.abs, positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
# Modulo operation to wrap around edges if necessary
neighboor_coords = jax.tree.map(
lambda nc: jnp.mod(nc.astype('int32'), jnp.array(grid_mesh.shape)),
neighboor_coords)
# Ensure grid_mesh shape is as expected
# Retrieve values from grid_mesh at each neighboring coordinate and multiply by kernel
grid_mesh = jax.tree.map(
lambda g, nc, k: g[nc[..., 0], nc[..., 1], nc[..., 2]] * k, grid_mesh,
neighboor_coords, kernel)
return grid_mesh.sum(axis=-1).reshape(original_shape[:-1]) # yapf: disable
@partial(jax.jit, static_argnums=(2, 3))
def cic_read(grid_mesh, positions, halo_size=0, sharding=None):
original_shape = positions.shape
positions = positions.reshape((*grid_mesh.shape, 3))
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacement = autoshmap(_cic_read_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec),
out_specs=spec)(grid_mesh, positions)
return displacement.reshape(original_shape[:-1])
def cic_paint_2d(mesh, positions, weight):
""" Paints positions onto a 2d mesh
mesh: [nx, ny]
positions: [npart, 2]
weight: [npart]
"""
positions = positions.reshape([-1, 2])
positions = jax.tree.map(lambda p: jnp.expand_dims(p, 1), positions)
floor = jax.tree.map(jnp.floor, positions)
connection = jnp.array([[[0, 0], [1., 0], [0., 1], [1., 1]]])
neighboor_coords = floor + connection
kernel = 1. - jax.tree.map(jnp.abs, positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1]
if weight is not None:
if jax.tree.all(jax.tree.map(jnp.isscalar, weight)):
kernel = jax.tree.map(
lambda k, w: jnp.multiply(jnp.expand_dims(w, axis=-1), k),
kernel, weight)
else:
kernel = jax.tree.map(
lambda k, w: jnp.multiply(w.reshape(*positions.shape[:-1]), k),
kernel, weight)
neighboor_coords = jax.tree.map(
lambda nc: jnp.mod(
nc.reshape([-1, 4, 2]).astype('int32'), jnp.array(mesh.shape)
), neighboor_coords)
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1),
scatter_dims_to_operand_dims=(0,
1))
mesh = jax.tree.map(
lambda g, nc, k: lax.scatter_add(g, nc, k.reshape([-1, 4]), dnums),
mesh, neighboor_coords, kernel)
return mesh
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
original_shape = displacements.shape
particle_mesh = jax.tree.map(
lambda x: jnp.zeros(x.shape[:-1], dtype=displacements.dtype),
displacements)
if not jnp.isscalar(weight):
if weight.shape != original_shape[:-1]:
raise ValueError("Weight shape must match particle shape")
else:
weight = weight.flatten()
# Padding is forced to be zero in a single gpu run
a, b, c = jax.tree.map(
lambda x: jnp.stack(jnp.meshgrid(jnp.arange(x.shape[0]),
jnp.arange(x.shape[1]),
jnp.arange(x.shape[2]),
indexing='ij'),
axis=0), particle_mesh)
particle_mesh = jax.tree.map(lambda x: jnp.pad(x, halo_size),
particle_mesh)
pmid = jax.tree.map(
lambda a, b, c: jnp.stack([a + halo_x, b + halo_y, c], axis=-1), a, b,
c)
return scatter(pmid.reshape([-1, 3]),
displacements.reshape([-1, 3]),
particle_mesh,
chunk_size=2**24,
val=weight)
@partial(jax.jit, static_argnums=(1, 2, 4))
def cic_paint_dx(displacements,
halo_size=0,
sharding=None,
weight=1.0,
chunk_size=2**24):
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
halo_size=halo_size,
weight=weight,
chunk_size=chunk_size),
gpu_mesh=gpu_mesh,
in_specs=spec,
out_specs=spec)(displacements)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
grid_mesh = slice_unpad(grid_mesh, halo_size, sharding)
return grid_mesh
def _cic_read_dx_impl(grid_mesh, disp, halo_size):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
original_shape = [
dim - 2 * halo[0] for dim, halo in zip(grid_mesh.shape, halo_size)
]
a, b, c = jnp.meshgrid(jnp.arange(original_shape[0]),
jnp.arange(original_shape[1]),
jnp.arange(original_shape[2]),
indexing='ij')
a, b, c = jax.tree.map(
lambda x: jnp.stack(jnp.meshgrid(jnp.arange(original_shape[0]),
jnp.arange(original_shape[1]),
jnp.arange(original_shape[2]),
indexing='ij'),
axis=0), grid_mesh)
pmid = jax.tree.map(
lambda a, b, c: jnp.stack([a + halo_x, b + halo_y, c], axis=-1), a, b,
c)
pmid = pmid.reshape([-1, 3])
disp = disp.reshape([-1, 3])
return gather(pmid, disp, grid_mesh).reshape(original_shape)
@partial(jax.jit, static_argnums=(2, 3))
def cic_read_dx(grid_mesh, disp, halo_size=0, sharding=None):
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacements = autoshmap(partial(_cic_read_dx_impl, halo_size=halo_size),
gpu_mesh=gpu_mesh,
in_specs=(spec),
out_specs=spec)(grid_mesh, disp)
return displacements
def compensate_cic(field):
"""
Compensate for CiC painting
Args:
field: input 3D cic-painted field
Returns:
compensated_field
"""
delta_k = fft3d(field)
kvec = fftk(delta_k)
delta_k = cic_compensation(kvec) * delta_k
return ifft3d(delta_k)