JaxPM/benchmarks/bench_pm.py
Wassim KABALAN 831291c1f9 bench
2024-08-02 23:39:09 +02:00

249 lines
8.9 KiB
Python

import os
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
import jax
jax.distributed.initialize()
rank = jax.process_index()
size = jax.process_count()
import argparse
import time
from hpc_plotter.timer import Timer
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
from cupy.cuda.nvtx import RangePop, RangePush
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
PIDController, SaveAt, Tsit5, diffeqsolve)
from jax.experimental import mesh_utils
from jax.experimental.multihost_utils import sync_global_devices
from jax.sharding import Mesh, NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.kernels import interpolate_power_spectrum
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
def run_simulation(mesh_shape,
box_size,
halo_size,
solver_choice,
iterations,
pdims=None):
@jax.jit
def simulate(omega_c, sigma8):
# Create a small function to generate the matter power spectrum
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
# Create initial conditions
initial_conditions = linear_field(mesh_shape,
box_size,
pk_fn,
seed=jax.random.PRNGKey(0))
# Create particles
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
if solver_choice == "Dopri5":
solver = Dopri5()
elif solver_choice == "LeapfrogMidpoint":
solver = LeapfrogMidpoint()
elif solver_choice == "Tsit5":
solver = Tsit5()
elif solver_choice == "lpt":
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
print(f"TYPE of lpt_field: {type(lpt_field)}")
return lpt_field, {"num_steps": 0}
else:
raise ValueError(
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
# Evolve the simulation forward
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
term = ODETerm(
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
if solver_choice == "Dopri5" or solver_choice == "Tsit5":
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
elif solver_choice == "LeapfrogMidpoint" or solver_choice == "Euler":
stepsize_controller = ConstantStepSize()
res = diffeqsolve(term,
solver,
t0=0.1,
t1=1.,
dt0=0.01,
y0=jnp.stack([dx, p], axis=0),
args=cosmo,
saveat=SaveAt(t1=True),
stepsize_controller=stepsize_controller)
# Return the simulation volume at requested
state = res.ys[-1]
final_field = cic_paint_dx(state[0], halo_size=halo_size)
return final_field, res.stats
def run():
# Warm start
chrono_fun = Timer()
RangePush("warmup")
final_field, stats = chrono_fun.chrono_jit(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
final_field, stats = chrono_fun.chrono_fun(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
return final_field, stats, chrono_fun
if jax.device_count() > 1:
devices = mesh_utils.create_device_mesh(pdims)
mesh = Mesh(devices.T, axis_names=('x', 'y'))
with mesh:
# Warm start
final_field, stats, chrono_fun = run()
else:
final_field, stats, chrono_fun = run()
return final_field, stats, chrono_fun
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='JAX Cosmo Simulation Benchmark')
parser.add_argument('-m',
'--mesh_size',
type=int,
help='Mesh size',
required=True)
parser.add_argument('-b',
'--box_size',
type=float,
help='Box size',
required=True)
parser.add_argument('-p',
'--pdims',
type=str,
help='Processor dimensions',
default=None)
parser.add_argument('-pr',
'--precision',
type=str,
help='Precision',
choices=["float32", "float64"],)
parser.add_argument('-hs',
'--halo_size',
type=int,
help='Halo size',
required=True)
parser.add_argument('-s',
'--solver',
type=str,
help='Solver',
choices=[
"Dopri5", "dopri5", "d5", "Tsit5", "tsit5", "t5",
"LeapfrogMidpoint", "leapfrogmidpoint", "lfm",
"lpt"
],
required=True)
parser.add_argument('-i',
'--iterations',
type=int,
help='Number of iterations',
default=10)
parser.add_argument('-o',
'--output_path',
type=str,
help='Output path',
default=".")
parser.add_argument('-f',
'--save_fields',
action='store_true',
help='Save fields')
parser.add_argument('-n',
'--nodes',
type=int,
help='Number of nodes',
default=1)
args = parser.parse_args()
mesh_size = args.mesh_size
box_size = [args.box_size] * 3
halo_size = args.halo_size
solver_choice = args.solver
iterations = args.iterations
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
print(f"solver choice: {solver_choice}")
match solver_choice:
case "Dopri5" | "dopri5"| "d5":
solver_choice = "Dopri5"
case "Tsit5"| "tsit5"| "t5":
solver_choice = "Tsit5"
case "LeapfrogMidpoint"| "leapfrogmidpoint"| "lfm":
solver_choice = "LeapfrogMidpoint"
case "lpt":
solver_choice = "lpt"
case _:
raise ValueError(
"Invalid solver choice. Use 'Dopri5', 'Tsit5', 'LeapfrogMidpoint' or 'lpt"
)
if args.precision == "float32":
jax.config.update("jax_enable_x64", False)
elif args.precision == "float64":
jax.config.update("jax_enable_x64", True)
if args.pdims:
pdims = tuple(map(int, args.pdims.split("x")))
else:
pdims = (1, 1)
mesh_shape = [mesh_size] * 3
final_field , stats, chrono_fun = run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, pdims)
print(f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}")
metadata = {
'rank': rank,
'function_name': f'JAXPM-{solver_choice}',
'precision': args.precision,
'x': str(mesh_size),
'y': str(mesh_size),
'z': str(stats["num_steps"]),
'px': str(pdims[0]),
'py': str(pdims[1]),
'backend': 'NCCL',
'nodes': str(args.nodes)
}
# Print the results to a CSV file
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
# Save the final field
nb_gpus = jax.device_count()
pdm_str = f"{pdims[0]}x{pdims[1]}"
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i , time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
print(f"Finished! ")
print(f"Stats {stats}")
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
print(f"Saving field and logs in {field_folder}")