mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-08 04:40:53 +00:00
95 lines
No EOL
3.1 KiB
Python
95 lines
No EOL
3.1 KiB
Python
import os
|
|
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
|
|
import jax
|
|
jax.distributed.initialize()
|
|
|
|
rank = jax.process_index()
|
|
size = jax.process_count()
|
|
|
|
import jax.numpy as jnp
|
|
import jax_cosmo as jc
|
|
|
|
from jax.experimental.ode import odeint
|
|
|
|
from jaxpm.painting import cic_paint, cic_read , cic_paint_dx , cic_read_dx
|
|
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
|
from diffrax import diffeqsolve, ODETerm, Dopri5, PIDController, SaveAt
|
|
import numpy as np
|
|
from jax.experimental import mesh_utils
|
|
from jax.sharding import Mesh, PartitionSpec as P , NamedSharding
|
|
from jaxpm.distributed import normal_field
|
|
from jaxpm.kernels import interpolate_power_spectrum
|
|
|
|
|
|
size = 256
|
|
mesh_shape= [size]*3
|
|
box_size = [float(size)]*3
|
|
snapshots = jnp.linspace(0.1,1.,4)
|
|
halo_size = 64
|
|
if jax.device_count() > 1 :
|
|
|
|
pdims = (4 , 2)
|
|
devices = mesh_utils.create_device_mesh(pdims)
|
|
mesh = Mesh(devices.T, axis_names=('x', 'y'))
|
|
sharding = NamedSharding(mesh , P('x' , 'y'))
|
|
|
|
|
|
@jax.jit
|
|
def run_simulation(omega_c, sigma8):
|
|
# Create a small function to generate the matter power spectrum
|
|
k = jnp.logspace(-4, 1, 128)
|
|
pk = jc.power.linear_matter_power(jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
|
|
|
|
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
|
|
# Create initial conditions
|
|
initial_conditions = linear_field(mesh_shape, box_size, pk_fn, seed=jax.random.PRNGKey(0))
|
|
|
|
|
|
# Create particles
|
|
particles = jnp.stack(jnp.meshgrid(*[jnp.arange(s) for s in mesh_shape]),axis=-1).reshape([-1,3])
|
|
|
|
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
|
|
|
|
# Initial displacement
|
|
dx, p, _ = lpt(cosmo, initial_conditions, 0.1 , halo_size=halo_size)
|
|
|
|
# Evolve the simulation forward
|
|
ode_fn = make_ode_fn(mesh_shape , halo_size=halo_size)
|
|
term = ODETerm(lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
|
|
solver = Dopri5()
|
|
|
|
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
|
|
res = diffeqsolve(term, solver, t0=0.1, t1=1., dt0=0.01, y0=jnp.stack([dx, p],axis=0),
|
|
args=cosmo,
|
|
saveat=SaveAt(ts=snapshots),
|
|
stepsize_controller=stepsize_controller)
|
|
|
|
# Return the simulation volume at requested
|
|
states = res.ys
|
|
field = cic_paint_dx(dx , halo_size = halo_size)
|
|
final_fields = [cic_paint_dx(state[0] , halo_size = halo_size) for state in states]
|
|
|
|
return initial_conditions , field ,final_fields , res.stats
|
|
|
|
|
|
# Run the simulation
|
|
if jax.device_count() > 1 :
|
|
with mesh:
|
|
init, field , final_fields , stats = run_simulation(0.32, 0.8)
|
|
|
|
else:
|
|
init, field, final_fields , stats = run_simulation(0.32, 0.8)
|
|
|
|
# # Print the statistics
|
|
print(stats)
|
|
|
|
# # save the final state
|
|
np.save(f'initial_conditions_{rank}.npy', init.addressable_data(0))
|
|
np.save(f'field_{rank}.npy', field.addressable_data(0))
|
|
|
|
if final_fields is not None:
|
|
for i, final_field in enumerate(final_fields):
|
|
np.save(f'final_field_{i}_{rank}.npy',
|
|
final_field.addressable_data(0))
|
|
|
|
print(f"Finished!!") |