mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-08 04:40:53 +00:00
140 lines
3.3 KiB
Python
140 lines
3.3 KiB
Python
from functools import partial
|
|
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
from jax.sharding import PartitionSpec as P
|
|
|
|
from jaxpm.distributed import autoshmap
|
|
|
|
|
|
def fftk(shape, dtype=np.float32):
|
|
"""
|
|
Generate Fourier transform wave numbers for a given mesh.
|
|
|
|
Args:
|
|
nc (int): Shape of the mesh grid.
|
|
|
|
Returns:
|
|
list: List of wave number arrays for each dimension in
|
|
the order [kx, ky, kz].
|
|
"""
|
|
kx, ky, kz = [jnp.fft.fftfreq(s, dtype=dtype) * 2 * np.pi for s in shape]
|
|
|
|
@partial(autoshmap,
|
|
in_specs=(P('x'), P('y'), P(None)),
|
|
out_specs=(P('x'), P(None, 'y'), P(None)))
|
|
def get_kvec(ky, kz, kx):
|
|
return (ky.reshape([-1, 1, 1]),
|
|
kz.reshape([1, -1, 1]),
|
|
kx.reshape([1, 1, -1])) # yapf: disable
|
|
ky, kz, kx = get_kvec(ky, kz, kx) # The order corresponds
|
|
# to the order of dimensions in the transposed FFT
|
|
return kx, ky, kz
|
|
|
|
|
|
def gradient_kernel(kvec, direction, order=1):
|
|
"""
|
|
Computes the gradient kernel in the requested direction
|
|
Parameters:
|
|
-----------
|
|
kvec: array
|
|
Array of k values in Fourier space
|
|
direction: int
|
|
Index of the direction in which to take the gradient
|
|
Returns:
|
|
--------
|
|
wts: array
|
|
Complex kernel
|
|
"""
|
|
if order == 0:
|
|
wts = 1j * kvec[direction]
|
|
wts = jnp.squeeze(wts)
|
|
wts[len(wts) // 2] = 0
|
|
wts = wts.reshape(kvec[direction].shape)
|
|
return wts
|
|
else:
|
|
w = kvec[direction]
|
|
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
|
|
wts = a * 1j
|
|
return wts
|
|
|
|
|
|
def laplace_kernel(kvec):
|
|
"""
|
|
Compute the Laplace kernel from a given K vector
|
|
Parameters:
|
|
-----------
|
|
kvec: array
|
|
Array of k values in Fourier space
|
|
Returns:
|
|
--------
|
|
wts: array
|
|
Complex kernel
|
|
"""
|
|
kk = sum(ki**2 for ki in kvec)
|
|
wts = jnp.where(kk == 0, 1., 1. / kk)
|
|
return wts
|
|
|
|
|
|
def longrange_kernel(kvec, r_split):
|
|
"""
|
|
Computes a long range kernel
|
|
Parameters:
|
|
-----------
|
|
kvec: array
|
|
Array of k values in Fourier space
|
|
r_split: float
|
|
TODO: @modichirag add documentation
|
|
Returns:
|
|
--------
|
|
wts: array
|
|
kernel
|
|
"""
|
|
if r_split != 0:
|
|
kk = sum(ki**2 for ki in kvec)
|
|
return np.exp(-kk * r_split**2)
|
|
else:
|
|
return 1.
|
|
|
|
|
|
def cic_compensation(kvec):
|
|
"""
|
|
Computes cic compensation kernel.
|
|
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
|
Itself based on equation 18 (with p=2) of
|
|
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
|
|
Args:
|
|
kvec: array of k values in Fourier space
|
|
Returns:
|
|
v: array of kernel
|
|
"""
|
|
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
|
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
|
return wts
|
|
|
|
|
|
def PGD_kernel(kvec, kl, ks):
|
|
"""
|
|
Computes the PGD kernel
|
|
Parameters:
|
|
-----------
|
|
kvec: array
|
|
Array of k values in Fourier space
|
|
kl: float
|
|
initial long range scale parameter
|
|
ks: float
|
|
initial dhort range scale parameter
|
|
Returns:
|
|
--------
|
|
v: array
|
|
kernel
|
|
"""
|
|
kk = sum(ki**2 for ki in kvec)
|
|
kl2 = kl**2
|
|
ks4 = ks**4
|
|
mask = (kk == 0).nonzero()
|
|
kk[mask] = 1
|
|
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
|
|
imask = (~(kk == 0)).astype(int)
|
|
v *= imask
|
|
return v
|