mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-07 20:30:54 +00:00
185 lines
5.1 KiB
Python
185 lines
5.1 KiB
Python
import jax
|
|
import jax.numpy as jnp
|
|
from jax.lax import scan
|
|
|
|
|
|
def _chunk_split(ptcl_num, chunk_size, *arrays):
|
|
"""Split and reshape particle arrays into chunks and remainders, with the remainders
|
|
preceding the chunks. 0D ones are duplicated as full arrays in the chunks."""
|
|
chunk_size = ptcl_num if chunk_size is None else min(chunk_size, ptcl_num)
|
|
remainder_size = ptcl_num % chunk_size
|
|
chunk_num = ptcl_num // chunk_size
|
|
|
|
remainder = None
|
|
chunks = arrays
|
|
if remainder_size:
|
|
remainder = [x[:remainder_size] if x.ndim != 0 else x for x in arrays]
|
|
chunks = [x[remainder_size:] if x.ndim != 0 else x for x in arrays]
|
|
|
|
# `scan` triggers errors in scatter and gather without the `full`
|
|
chunks = [
|
|
x.reshape(chunk_num, chunk_size, *x.shape[1:])
|
|
if x.ndim != 0 else jnp.full(chunk_num, x) for x in chunks
|
|
]
|
|
|
|
return remainder, chunks
|
|
|
|
|
|
def enmesh(i1, d1, a1, s1, b12, a2, s2):
|
|
"""Multilinear enmeshing."""
|
|
i1 = jnp.asarray(i1)
|
|
d1 = jnp.asarray(d1)
|
|
a1 = jnp.float64(a1) if a2 is not None else jnp.array(a1, dtype=d1.dtype)
|
|
if s1 is not None:
|
|
s1 = jnp.array(s1, dtype=i1.dtype)
|
|
b12 = jnp.float64(b12)
|
|
if a2 is not None:
|
|
a2 = jnp.float64(a2)
|
|
if s2 is not None:
|
|
s2 = jnp.array(s2, dtype=i1.dtype)
|
|
|
|
dim = i1.shape[1]
|
|
neighbors = (jnp.arange(2**dim, dtype=i1.dtype)[:, jnp.newaxis] >>
|
|
jnp.arange(dim, dtype=i1.dtype)) & 1
|
|
|
|
if a2 is not None:
|
|
P = i1 * a1 + d1 - b12
|
|
P = P[:, jnp.newaxis] # insert neighbor axis
|
|
i2 = P + neighbors * a2 # multilinear
|
|
|
|
if s1 is not None:
|
|
L = s1 * a1
|
|
i2 %= L
|
|
|
|
i2 //= a2
|
|
d2 = P - i2 * a2
|
|
|
|
if s1 is not None:
|
|
d2 -= jnp.rint(d2 / L) * L # also abs(d2) < a2 is expected
|
|
|
|
i2 = i2.astype(i1.dtype)
|
|
d2 = d2.astype(d1.dtype)
|
|
a2 = a2.astype(d1.dtype)
|
|
|
|
d2 /= a2
|
|
else:
|
|
i12, d12 = jnp.divmod(b12, a1)
|
|
i1 -= i12.astype(i1.dtype)
|
|
d1 -= d12.astype(d1.dtype)
|
|
|
|
# insert neighbor axis
|
|
i1 = i1[:, jnp.newaxis]
|
|
d1 = d1[:, jnp.newaxis]
|
|
|
|
# multilinear
|
|
d1 /= a1
|
|
i2 = jnp.floor(d1).astype(i1.dtype)
|
|
i2 += neighbors
|
|
d2 = d1 - i2
|
|
i2 += i1
|
|
|
|
if s1 is not None:
|
|
i2 %= s1
|
|
|
|
f2 = 1 - jnp.abs(d2)
|
|
|
|
if s1 is None and s2 is not None: # all i2 >= 0 if s1 is not None
|
|
i2 = jnp.where(i2 < 0, s2, i2)
|
|
|
|
f2 = f2.prod(axis=-1)
|
|
|
|
return i2, f2
|
|
|
|
|
|
def _scatter_chunk(carry, chunk):
|
|
mesh, offset, cell_size, mesh_shape = carry
|
|
pmid, disp, val = chunk
|
|
spatial_ndim = pmid.shape[1]
|
|
spatial_shape = mesh.shape
|
|
|
|
# multilinear mesh indices and fractions
|
|
ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size,
|
|
spatial_shape)
|
|
# scatter
|
|
ind = tuple(ind[..., i] for i in range(spatial_ndim))
|
|
mesh = mesh.at[ind].add(val * frac)
|
|
|
|
carry = mesh, offset, cell_size, mesh_shape
|
|
return carry, None
|
|
|
|
|
|
def scatter(pmid,
|
|
disp,
|
|
mesh,
|
|
chunk_size=2**24,
|
|
val=1.,
|
|
offset=0,
|
|
cell_size=1.):
|
|
|
|
ptcl_num, spatial_ndim = pmid.shape
|
|
val = jnp.asarray(val)
|
|
mesh = jnp.asarray(mesh)
|
|
|
|
remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val)
|
|
carry = mesh, offset, cell_size, mesh.shape
|
|
if remainder is not None:
|
|
carry = _scatter_chunk(carry, remainder)[0]
|
|
carry = scan(_scatter_chunk, carry, chunks)[0]
|
|
mesh = carry[0]
|
|
return mesh
|
|
|
|
|
|
def _chunk_cat(remainder_array, chunked_array):
|
|
"""Reshape and concatenate one remainder and one chunked particle arrays."""
|
|
array = chunked_array.reshape(-1, *chunked_array.shape[2:])
|
|
|
|
if remainder_array is not None:
|
|
array = jnp.concatenate((remainder_array, array), axis=0)
|
|
|
|
return array
|
|
|
|
|
|
def gather(pmid, disp, mesh, chunk_size=2**24, val=1, offset=0, cell_size=1.):
|
|
ptcl_num, spatial_ndim = pmid.shape
|
|
|
|
mesh = jnp.asarray(mesh)
|
|
|
|
val = jnp.asarray(val)
|
|
|
|
if mesh.shape[spatial_ndim:] != val.shape[1:]:
|
|
raise ValueError('channel shape mismatch: '
|
|
f'{mesh.shape[spatial_ndim:]} != {val.shape[1:]}')
|
|
|
|
remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val)
|
|
|
|
carry = mesh, offset, cell_size, mesh.shape
|
|
val_0 = None
|
|
if remainder is not None:
|
|
val_0 = _gather_chunk(carry, remainder)[1]
|
|
val = scan(_gather_chunk, carry, chunks)[1]
|
|
|
|
val = _chunk_cat(val_0, val)
|
|
|
|
return val
|
|
|
|
|
|
def _gather_chunk(carry, chunk):
|
|
mesh, offset, cell_size, mesh_shape = carry
|
|
pmid, disp, val = chunk
|
|
|
|
spatial_ndim = pmid.shape[1]
|
|
|
|
spatial_shape = mesh.shape[:spatial_ndim]
|
|
chan_ndim = mesh.ndim - spatial_ndim
|
|
chan_axis = tuple(range(-chan_ndim, 0))
|
|
|
|
# multilinear mesh indices and fractions
|
|
ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size,
|
|
spatial_shape)
|
|
|
|
# gather
|
|
ind = tuple(ind[..., i] for i in range(spatial_ndim))
|
|
frac = jnp.expand_dims(frac, chan_axis)
|
|
val += (mesh.at[ind].get(mode='drop', fill_value=0) * frac).sum(axis=1)
|
|
|
|
return carry, val
|