JaxPM/scripts/distributed_pm.py
Wassim KABALAN 4f508b7cb6 format
2024-07-18 13:16:14 +02:00

105 lines
3.2 KiB
Python

import os
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
import jax
jax.distributed.initialize()
rank = jax.process_index()
size = jax.process_count()
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
from diffrax import Dopri5, ODETerm, PIDController, SaveAt, diffeqsolve
from jax.experimental import mesh_utils
from jax.sharding import Mesh, NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.kernels import interpolate_power_spectrum
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
size = 256
mesh_shape = [size] * 3
box_size = [float(size)] * 3
snapshots = jnp.linspace(0.1, 1., 4)
halo_size = 64
if jax.device_count() > 1:
pdims = (4, 2)
devices = mesh_utils.create_device_mesh(pdims)
mesh = Mesh(devices.T, axis_names=('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
@jax.jit
def run_simulation(omega_c, sigma8):
# Create a small function to generate the matter power spectrum
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
# Create initial conditions
initial_conditions = linear_field(mesh_shape,
box_size,
pk_fn,
seed=jax.random.PRNGKey(0))
# Create particles
particles = jnp.stack(jnp.meshgrid(*[jnp.arange(s) for s in mesh_shape]),
axis=-1).reshape([-1, 3])
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
# Initial displacement
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
# Evolve the simulation forward
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
term = ODETerm(
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
solver = Dopri5()
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
res = diffeqsolve(term,
solver,
t0=0.1,
t1=1.,
dt0=0.01,
y0=jnp.stack([dx, p], axis=0),
args=cosmo,
saveat=SaveAt(ts=snapshots),
stepsize_controller=stepsize_controller)
# Return the simulation volume at requested
states = res.ys
field = cic_paint_dx(dx, halo_size=halo_size)
final_fields = [
cic_paint_dx(state[0], halo_size=halo_size) for state in states
]
return initial_conditions, field, final_fields, res.stats
# Run the simulation
if jax.device_count() > 1:
with mesh:
init, field, final_fields, stats = run_simulation(0.32, 0.8)
else:
init, field, final_fields, stats = run_simulation(0.32, 0.8)
# # Print the statistics
print(stats)
# # save the final state
np.save(f'initial_conditions_{rank}.npy', init.addressable_data(0))
np.save(f'field_{rank}.npy', field.addressable_data(0))
if final_fields is not None:
for i, final_field in enumerate(final_fields):
np.save(f'final_field_{i}_{rank}.npy', final_field.addressable_data(0))
print(f"Finished!!")