JaxPM/jaxpm/pm.py
2022-10-22 11:30:25 -05:00

107 lines
No EOL
3.6 KiB
Python

import jax
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.ops import fft3d, ifft3d, zeros
from jaxpm.kernels import fftk, apply_gradient_laplace
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None):
"""
Computes gravitational forces on particles using a PM scheme
"""
if mesh_shape is None:
mesh_shape = delta_k.shape
kvec = fftk(mesh_shape, comms=comms)
if delta_k is None:
delta, token = cic_paint(zeros(mesh_shape,comms=comms),
positions,
halo_size=halo_size, token=token, comms=comms)
delta_k, token = fft3d(delta, token=token, comms=comms)
# Computes gravitational potential
forces_k = apply_gradient_laplace(kfield, kvec)
# Computes gravitational forces
fx, token = ifft3d(forces_k[...,0], token=token, comms=comms)
fx, token = cic_read(fx, positions, halo_size=halo_size, comms=comms)
fy, token = ifft3d(forces_k[...,1], token=token, comms=comms)
fy, token = cic_read(fy, positions, halo_size=halo_size, comms=comms)
fz, token = ifft3d(forces_k[...,2], token=token, comms=comms)
fz, token = cic_read(fz, positions, halo_size=halo_size, comms=comms)
return jnp.stack([fx,fy,fz],axis=-1), token
def lpt(cosmo, initial_conditions, positions, a, token=token, comms=comms):
"""
Computes first order LPT displacement
"""
initial_force = pm_forces(positions, delta=initial_conditions, token=token, comms=comms)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
return dx, p, f, comms
def linear_field(mesh_shape, box_size, pk, seed):
"""
Generate initial conditions.
"""
kvec = fftk(mesh_shape)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
field = jax.random.normal(seed, mesh_shape)
field = jnp.fft.rfftn(field) * pkmesh**0.5
field = jnp.fft.irfftn(field)
return field
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode
def pgd_correction(pos, params):
"""
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
args:
pos: particle positions [npart, 3]
params: [alpha, kl, ks] pgd parameters
"""
kvec = fftk(mesh_shape)
delta = cic_paint(jnp.zeros(mesh_shape), pos)
alpha, kl, ks = params
delta_k = jnp.fft.rfftn(delta)
PGD_range=PGD_kernel(kvec, kl, ks)
pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos)
for i in range(3)],axis=-1)
dpos_pgd = forces_pgd*alpha
return dpos_pgd