JaxPM/jaxpm/ops.py
2022-10-22 08:30:43 -04:00

111 lines
3.6 KiB
Python

# Module for custom ops, typically mpi4jax
import jax
import jax.numpy as jnp
import mpi4jax
def fft3d(arr, token=None, comms=None):
""" Computes forward FFT, note that the output is transposed
"""
if comms is not None:
shape = list(arr.shape)
nx = comms[0].Get_size()
ny = comms[1].Get_size()
# First FFT along z
arr = jnp.fft.fft(arr) # [x, y, z]
# Perform single gpu or distributed transpose
if comms == None:
arr = arr.transpose([1, 2, 0])
else:
arr = arr.reshape(shape[:-1]+[nx, shape[-1] // nx])
arr = arr.transpose([2, 1, 3, 0]) # [y, z, x]
arr, token = mpi4jax.alltoall(arr, comm=comms[0], token=token)
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [y, z, x]
# Second FFT along x
arr = jnp.fft.fft(arr)
# Perform single gpu or distributed transpose
if comms == None:
arr = arr.transpose([1, 2, 0])
else:
arr = arr.reshape(shape[:-1]+[ny, shape[-1] // ny])
arr = arr.transpose([2, 1, 3, 0]) # [z, x, y]
arr, token = mpi4jax.alltoall(arr, comm=comms[1], token=token)
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z, x, y]
# Third FFT along y
arr = jnp.fft.fft(arr)
if comms == None:
return arr
else:
return arr, token
def ifft3d(arr, token=None, comms=None):
""" Let's assume that the data is distributed accross x
"""
if comms is not None:
shape = list(arr.shape)
nx = comms[0].Get_size()
ny = comms[1].Get_size()
# First FFT along y
arr = jnp.fft.ifft(arr) # Now [z, x, y]
# Perform single gpu or distributed transpose
if comms == None:
arr = arr.transpose([0, 2, 1])
else:
arr = arr.reshape(shape[:-1]+[ny, shape[-1] // ny])
arr = arr.transpose([2, 0, 3, 1]) # Now [z, y, x]
arr, token = mpi4jax.alltoall(arr, comm=comms[1], token=token)
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z,y,x]
# Second FFT along x
arr = jnp.fft.ifft(arr)
# Perform single gpu or distributed transpose
if comms == None:
arr = arr.transpose([2, 1, 0])
else:
arr = arr.reshape(shape[:-1]+[nx, shape[-1] // nx])
arr = arr.transpose([2, 3, 1, 0]) # now [x, y, z]
arr, token = mpi4jax.alltoall(arr, comm=comms[0], token=token)
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [x,y,z]
# Third FFT along y
arr = jnp.fft.fft(arr)
if comms == None:
return arr
else:
return arr, token
def halo_reduce(arr, halo_size, token=None, comms=None):
# Perform halo exchange along x
rank_x = comms[0].Get_rank()
margin = arr[-2*halo_size:]
margin, token = mpi4jax.sendrecv(margin, margin, rank_x-1, rank_x+1,
comm=comms[0], token=token)
arr = arr.at[:2*halo_size].add(margin)
margin = arr[:2*halo_size]
margin, token = mpi4jax.sendrecv(margin, margin, rank_x+1, rank_x-1,
comm=comms[0], token=token)
arr = arr.at[-2*halo_size:].add(margin)
# Perform halo exchange along y
rank_y = comms[1].Get_rank()
margin = arr[:, -2*halo_size:]
margin, token = mpi4jax.sendrecv(margin, margin, rank_y-1, rank_y+1,
comm=comms[0], token=token)
arr = arr.at[:, :2*halo_size].add(margin)
margin = arr[:, :2*halo_size]
margin, token = mpi4jax.sendrecv(margin, margin, rank_y+1, rank_y-1,
comm=comms[0], token=token)
arr = arr.at[:, -2*halo_size:].add(margin)
return arr, token