mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-07 20:30:54 +00:00
163 lines
5.4 KiB
Bash
163 lines
5.4 KiB
Bash
#!/bin/bash
|
|
##############################################################################################################################
|
|
# USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm
|
|
##############################################################################################################################
|
|
#SBATCH --job-name=Particle-Mesh # nom du job
|
|
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
|
|
#SBATCH --hint=nomultithread # hyperthreading desactive
|
|
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
|
|
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
|
|
#SBATCH --error=%x_%N_a100.err # nom du fichier d'erreur (ici commun avec la sortie)
|
|
#SBATCH --exclusive # ressources dediees
|
|
##SBATCH --qos=qos_gpu-dev
|
|
# Nettoyage des modules charges en interactif et herites par defaut
|
|
num_nodes=$SLURM_JOB_NUM_NODES
|
|
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
|
|
OUTPUT_FOLDER_ARGS=1
|
|
# Calculate the number of GPUs
|
|
nb_gpus=$(( num_nodes * num_gpu_per_node))
|
|
|
|
module purge
|
|
|
|
echo "Job partition: $SLURM_JOB_PARTITION"
|
|
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
|
|
# pour avoir acces aux modules compatibles avec cette partition
|
|
|
|
if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then
|
|
module load cpuarch/amd
|
|
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
|
|
gpu_name=a100
|
|
else
|
|
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
|
|
gpu_name=v100
|
|
fi
|
|
|
|
# Chargement des modules
|
|
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
|
|
module load nvidia-nsight-systems/2024.1.1.59
|
|
|
|
|
|
echo "The number of nodes allocated for this job is: $num_nodes"
|
|
echo "The number of GPUs allocated for this job is: $nb_gpus"
|
|
|
|
export EQX_ON_ERROR=nan
|
|
export ENABLE_PERFO_STEP=NVTX
|
|
export MPI4JAX_USE_CUDA_MPI=1
|
|
|
|
function profile_python() {
|
|
if [ $# -lt 1 ]; then
|
|
echo "Usage: profile_python <python_script> [arguments for the script]"
|
|
return 1
|
|
fi
|
|
|
|
local script_name=$(basename "$1" .py)
|
|
local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name"
|
|
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
|
|
|
|
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
|
local args=$(echo "${@:2}" | tr ' ' '_')
|
|
# Remove characters '/' and '-' from folder name
|
|
args=$(echo "$args" | tr -d '/-')
|
|
output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args"
|
|
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
|
|
fi
|
|
|
|
mkdir -p "$output_dir"
|
|
mkdir -p "$report_dir"
|
|
|
|
srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
|
}
|
|
|
|
function run_python() {
|
|
if [ $# -lt 1 ]; then
|
|
echo "Usage: run_python <python_script> [arguments for the script]"
|
|
return 1
|
|
fi
|
|
|
|
local script_name=$(basename "$1" .py)
|
|
local output_dir="traces/$gpu_name/$nb_gpus/$script_name"
|
|
|
|
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
|
local args=$(echo "${@:2}" | tr ' ' '_')
|
|
# Remove characters '/' and '-' from folder name
|
|
args=$(echo "$args" | tr -d '/-')
|
|
output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args"
|
|
fi
|
|
|
|
mkdir -p "$output_dir"
|
|
|
|
srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
|
}
|
|
|
|
|
|
# run or profile
|
|
|
|
function slaunch() {
|
|
run_python "$@"
|
|
}
|
|
|
|
function plaunch() {
|
|
profile_python "$@"
|
|
}
|
|
|
|
# Echo des commandes lancees
|
|
set -x
|
|
|
|
# Pour ne pas utiliser le /tmp
|
|
export TMPDIR=$JOBSCRATCH
|
|
# Pour contourner un bogue dans les versions actuelles de Nsight Systems
|
|
# il est également nécessaire de créer un lien symbolique permettant de
|
|
# faire pointer le répertoire /tmp/nvidia vers TMPDIR
|
|
ln -s $JOBSCRATCH /tmp/nvidia
|
|
|
|
declare -A pdims_table
|
|
# Define the table
|
|
pdims_table[1]="1x1"
|
|
pdims_table[4]="2x2 1x4 4x1"
|
|
pdims_table[8]="2x4 1x8 8x1 4x2"
|
|
pdims_table[16]="4x4 1x16 16x1"
|
|
pdims_table[32]="4x8 8x4 1x32 32x1"
|
|
pdims_table[64]="8x8 16x4 1x64 64x1"
|
|
pdims_table[128]="8x16 16x8 1x128 128x1"
|
|
pdims_table[256]="16x16 1x256 256x1"
|
|
|
|
# mpch=(128 256 512 1024 2048 4096)
|
|
grid=(256 512 1024 2048 4096 8192)
|
|
precisions=(float32 float64)
|
|
pdim="${pdims_table[$nb_gpus]}"
|
|
solvers=(lpt lfm)
|
|
echo "pdims: $pdim"
|
|
|
|
# Check if pdims is not empty
|
|
if [ -z "$pdim" ]; then
|
|
echo "pdims is empty"
|
|
echo "Number of gpus has to be 8, 16, 32, 64, 128 or 160"
|
|
echo "Number of nodes selected: $num_nodes"
|
|
echo "Number of gpus per node: $num_gpu_per_node"
|
|
exit 1
|
|
fi
|
|
|
|
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
|
|
out_dir="pm_prof/$gpu_name/$nb_gpus"
|
|
trace_dir="traces/$gpu_name/$nb_gpus/bench_pm"
|
|
echo "Output dir is : $out_dir"
|
|
echo "Trace dir is : $trace_dir"
|
|
|
|
for pr in "${precisions[@]}"; do
|
|
for g in "${grid[@]}"; do
|
|
for solver in "${solvers[@]}"; do
|
|
for p in $pdim; do
|
|
halo_size=$((g / 4))
|
|
slaunch bench_pm.py -m $g -b $g -p $p -hs $halo_size -pr $pr -s $solver -i 4 -o $out_dir -f -n $num_nodes
|
|
done
|
|
done
|
|
# delete crash core dump files
|
|
rm -f core.python.*
|
|
done
|
|
done
|
|
|
|
# # zip the output files and traces
|
|
# tar -czvf $out_dir.tar.gz $out_dir
|
|
# tar -czvf $trace_dir.tar.gz $trace_dir
|
|
# # remove the output files and traces
|
|
# rm -rf $out_dir $trace_dir
|