JaxPM/tests/conftest.py
Wassim Kabalan 1f5c619531 format
2025-01-20 22:41:19 +01:00

195 lines
5.3 KiB
Python

# Parameterized fixture for mesh_shape
import os
import pytest
os.environ["EQX_ON_ERROR"] = "nan"
setup_done = False
on_cluster = False
def is_on_cluster():
global on_cluster
return on_cluster
def initialize_distributed():
global setup_done
global on_cluster
if not setup_done:
if "SLURM_JOB_ID" in os.environ:
on_cluster = True
print("Running on cluster")
import jax
jax.distributed.initialize()
setup_done = True
on_cluster = True
else:
print("Running locally")
setup_done = True
on_cluster = False
os.environ["JAX_PLATFORM_NAME"] = "cpu"
os.environ[
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
import jax
@pytest.fixture(
scope="session",
params=[
((32, 32, 32), (256., 256., 256.)), # BOX
((32, 32, 64), (256., 256., 512.)), # RECTANGULAR
])
def simulation_config(request):
return request.param
@pytest.fixture(scope="session", params=[0.1, 0.5, 0.8])
def lpt_scale_factor(request):
return request.param
@pytest.fixture(scope="session")
def cosmo():
from functools import partial
from jax_cosmo import Cosmology
Planck18 = partial(
Cosmology,
# Omega_m = 0.3111
Omega_c=0.2607,
Omega_b=0.0490,
Omega_k=0.0,
h=0.6766,
n_s=0.9665,
sigma8=0.8102,
w0=-1.0,
wa=0.0,
)
return Planck18()
@pytest.fixture(scope="session")
def particle_mesh(simulation_config):
from pmesh.pm import ParticleMesh
mesh_shape, box_shape = simulation_config
return ParticleMesh(BoxSize=box_shape, Nmesh=mesh_shape, dtype='f4')
@pytest.fixture(scope="session")
def fpm_initial_conditions(cosmo, particle_mesh):
import jax_cosmo as jc
import numpy as np
from jax import numpy as jnp
# Generate initial particle positions
grid = particle_mesh.generate_uniform_particle_grid(shift=0).astype(
np.float32)
# Interpolate with linear_matter spectrum to get initial density field
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(cosmo, k)
def pk_fn(x):
return jnp.interp(x.reshape([-1]), k, pk).reshape(x.shape)
whitec = particle_mesh.generate_whitenoise(42,
type='complex',
unitary=False)
lineark = whitec.apply(lambda k, v: pk_fn(sum(ki**2 for ki in k)**0.5)**0.5
* v * (1 / v.BoxSize).prod()**0.5)
init_mesh = lineark.c2r().value # XXX
return lineark, grid, init_mesh
@pytest.fixture(scope="session")
def initial_conditions(fpm_initial_conditions):
_, _, init_mesh = fpm_initial_conditions
return init_mesh
@pytest.fixture(scope="session")
def solver(cosmo, particle_mesh):
from fastpm.core import Cosmology as FastPMCosmology
from fastpm.core import Solver
ref_cosmo = FastPMCosmology(cosmo)
return Solver(particle_mesh, ref_cosmo, B=1)
@pytest.fixture(scope="session")
def fpm_lpt1(solver, fpm_initial_conditions, lpt_scale_factor):
lineark, grid, _ = fpm_initial_conditions
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=1)
return statelpt
@pytest.fixture(scope="session")
def fpm_lpt1_field(fpm_lpt1, particle_mesh):
return particle_mesh.paint(fpm_lpt1.X).value
@pytest.fixture(scope="session")
def fpm_lpt2(solver, fpm_initial_conditions, lpt_scale_factor):
lineark, grid, _ = fpm_initial_conditions
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=2)
return statelpt
@pytest.fixture(scope="session")
def fpm_lpt2_field(fpm_lpt2, particle_mesh):
return particle_mesh.paint(fpm_lpt2.X).value
@pytest.fixture(scope="session")
def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor):
import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8")
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
finalstate = solver.nbody(fpm_lpt1, leapfrog(stages))
fpm_mesh = particle_mesh.paint(finalstate.X).value
return fpm_mesh
@pytest.fixture(scope="session")
def nbody_from_lpt2(solver, fpm_lpt2, particle_mesh, lpt_scale_factor):
import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8")
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
finalstate = solver.nbody(fpm_lpt2, leapfrog(stages))
fpm_mesh = particle_mesh.paint(finalstate.X).value
return fpm_mesh
def compare_sharding(sharding1, sharding2):
def get_axis_size(sharding, idx):
axis_name = sharding.spec[idx]
if axis_name is None:
return 1
else:
return sharding.mesh.shape[sharding.spec[idx]]
def get_pdims_from_sharding(sharding):
return tuple(
[get_axis_size(sharding, i) for i in range(len(sharding.spec))])
pdims1 = get_pdims_from_sharding(sharding1)
pdims2 = get_pdims_from_sharding(sharding2)
pdims1 = pdims1 + (1, ) * (3 - len(pdims1))
pdims2 = pdims2 + (1, ) * (3 - len(pdims2))
return pdims1 == pdims2