mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-02-23 01:57:10 +00:00
195 lines
5.3 KiB
Python
195 lines
5.3 KiB
Python
# Parameterized fixture for mesh_shape
|
|
import os
|
|
|
|
import pytest
|
|
|
|
os.environ["EQX_ON_ERROR"] = "nan"
|
|
setup_done = False
|
|
on_cluster = False
|
|
|
|
|
|
def is_on_cluster():
|
|
global on_cluster
|
|
return on_cluster
|
|
|
|
|
|
def initialize_distributed():
|
|
global setup_done
|
|
global on_cluster
|
|
if not setup_done:
|
|
if "SLURM_JOB_ID" in os.environ:
|
|
on_cluster = True
|
|
print("Running on cluster")
|
|
import jax
|
|
jax.distributed.initialize()
|
|
setup_done = True
|
|
on_cluster = True
|
|
else:
|
|
print("Running locally")
|
|
setup_done = True
|
|
on_cluster = False
|
|
os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
|
os.environ[
|
|
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
|
|
import jax
|
|
|
|
|
|
@pytest.fixture(
|
|
scope="session",
|
|
params=[
|
|
((32, 32, 32), (256., 256., 256.)), # BOX
|
|
((32, 32, 64), (256., 256., 512.)), # RECTANGULAR
|
|
])
|
|
def simulation_config(request):
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(scope="session", params=[0.1, 0.5, 0.8])
|
|
def lpt_scale_factor(request):
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def cosmo():
|
|
from functools import partial
|
|
|
|
from jax_cosmo import Cosmology
|
|
Planck18 = partial(
|
|
Cosmology,
|
|
# Omega_m = 0.3111
|
|
Omega_c=0.2607,
|
|
Omega_b=0.0490,
|
|
Omega_k=0.0,
|
|
h=0.6766,
|
|
n_s=0.9665,
|
|
sigma8=0.8102,
|
|
w0=-1.0,
|
|
wa=0.0,
|
|
)
|
|
|
|
return Planck18()
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def particle_mesh(simulation_config):
|
|
from pmesh.pm import ParticleMesh
|
|
mesh_shape, box_shape = simulation_config
|
|
return ParticleMesh(BoxSize=box_shape, Nmesh=mesh_shape, dtype='f4')
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fpm_initial_conditions(cosmo, particle_mesh):
|
|
import jax_cosmo as jc
|
|
import numpy as np
|
|
from jax import numpy as jnp
|
|
|
|
# Generate initial particle positions
|
|
grid = particle_mesh.generate_uniform_particle_grid(shift=0).astype(
|
|
np.float32)
|
|
# Interpolate with linear_matter spectrum to get initial density field
|
|
k = jnp.logspace(-4, 1, 128)
|
|
pk = jc.power.linear_matter_power(cosmo, k)
|
|
|
|
def pk_fn(x):
|
|
return jnp.interp(x.reshape([-1]), k, pk).reshape(x.shape)
|
|
|
|
whitec = particle_mesh.generate_whitenoise(42,
|
|
type='complex',
|
|
unitary=False)
|
|
lineark = whitec.apply(lambda k, v: pk_fn(sum(ki**2 for ki in k)**0.5)**0.5
|
|
* v * (1 / v.BoxSize).prod()**0.5)
|
|
init_mesh = lineark.c2r().value # XXX
|
|
|
|
return lineark, grid, init_mesh
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def initial_conditions(fpm_initial_conditions):
|
|
_, _, init_mesh = fpm_initial_conditions
|
|
return init_mesh
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def solver(cosmo, particle_mesh):
|
|
from fastpm.core import Cosmology as FastPMCosmology
|
|
from fastpm.core import Solver
|
|
ref_cosmo = FastPMCosmology(cosmo)
|
|
return Solver(particle_mesh, ref_cosmo, B=1)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fpm_lpt1(solver, fpm_initial_conditions, lpt_scale_factor):
|
|
|
|
lineark, grid, _ = fpm_initial_conditions
|
|
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=1)
|
|
return statelpt
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fpm_lpt1_field(fpm_lpt1, particle_mesh):
|
|
return particle_mesh.paint(fpm_lpt1.X).value
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fpm_lpt2(solver, fpm_initial_conditions, lpt_scale_factor):
|
|
|
|
lineark, grid, _ = fpm_initial_conditions
|
|
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=2)
|
|
return statelpt
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def fpm_lpt2_field(fpm_lpt2, particle_mesh):
|
|
return particle_mesh.paint(fpm_lpt2.X).value
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor):
|
|
import numpy as np
|
|
from fastpm.core import leapfrog
|
|
|
|
if lpt_scale_factor == 0.8:
|
|
pytest.skip("Do not run nbody simulation from scale factor 0.8")
|
|
|
|
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
|
|
|
|
finalstate = solver.nbody(fpm_lpt1, leapfrog(stages))
|
|
fpm_mesh = particle_mesh.paint(finalstate.X).value
|
|
|
|
return fpm_mesh
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def nbody_from_lpt2(solver, fpm_lpt2, particle_mesh, lpt_scale_factor):
|
|
import numpy as np
|
|
from fastpm.core import leapfrog
|
|
|
|
if lpt_scale_factor == 0.8:
|
|
pytest.skip("Do not run nbody simulation from scale factor 0.8")
|
|
|
|
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
|
|
|
|
finalstate = solver.nbody(fpm_lpt2, leapfrog(stages))
|
|
fpm_mesh = particle_mesh.paint(finalstate.X).value
|
|
|
|
return fpm_mesh
|
|
|
|
|
|
def compare_sharding(sharding1, sharding2):
|
|
|
|
def get_axis_size(sharding, idx):
|
|
axis_name = sharding.spec[idx]
|
|
if axis_name is None:
|
|
return 1
|
|
else:
|
|
return sharding.mesh.shape[sharding.spec[idx]]
|
|
|
|
def get_pdims_from_sharding(sharding):
|
|
return tuple(
|
|
[get_axis_size(sharding, i) for i in range(len(sharding.spec))])
|
|
|
|
pdims1 = get_pdims_from_sharding(sharding1)
|
|
pdims2 = get_pdims_from_sharding(sharding2)
|
|
pdims1 = pdims1 + (1, ) * (3 - len(pdims1))
|
|
pdims2 = pdims2 + (1, ) * (3 - len(pdims2))
|
|
return pdims1 == pdims2
|